Indexed in SCIE, Scopus, PubMed & PMC
pISSN 1226-4512 eISSN 2093-3827
The role of 27-hydroxycholesterol in meta-inflammation
Transcriptional regulation of genetic variants in the SLC40A1 promoter
Development of a model to predict vancomycin serum concentration during continuous infusion of vancomycin in critically ill pediatric patients
Effects of gas signaling molecule SO2 in cardiac functions of hyperthyroid rats
Exercise alleviates cisplatin-induced toxicity in the hippocampus of mice by inhibiting neuroinflammation and improving synaptic plasticity
Profiling of endogenous metabolites and changes in intestinal microbiota distribution after GEN-001 (Lactococcus lactis) administration
Somatodendritic organization of pacemaker activity in midbrain dopamine neurons

Current Issue

    March, 2024 | Volume 28, No. 2
  • Review Article 2024-03-01

    The role of 27-hydroxycholesterol in meta-inflammation

    Yonghae Son, Eunbeen Choi, Yujin Hwang et al.

    Abstract : 27-Hydroxycholesterol (27OHChol), a prominent cholesterol metabolite present in the bloodstream and peripheral tissues, is a kind of immune oxysterol that elicits immune response. Recent research indicates the involvement of 27OHChol in metabolic inflammation (meta-inflammation) characterized by chronic responses associated with metabolic irregularities. 27OHChol activates monocytic cells such that they secrete pro-inflammatory cytokines and chemokines, and increase the expression of cell surface molecules such as pattern-recognition receptors that play key roles in immune cell-cell communication and sensing metabolism-associated danger signals. Levels of 27OHChol increase when cholesterol metabolism is disrupted, and the resulting inflammatory responses can contribute to the development and complications of metabolic syndrome, including obesity, insulin resistance, and cardiovascular diseases. Since 27OHChol can induce chronic immune response by activating monocyte-macrophage lineage cells that play a crucial role in meta-inflammation, it is essential to understand the 27OHChol-induced inflammatory responses to unravel the roles and mechanisms of action of this cholesterol metabolite in chronic metabolic disorders.

    Show More  
  • Original Article 2024-03-01

    Transcriptional regulation of genetic variants in the SLC40A1 promoter

    Seung Yeon Ha, Jin-Young Kim, and Ji Ha Choi

    Abstract : Solute carrier 40A1 (SLC40A1) encodes ferroportin, which is the only known transmembrane protein that exports elemental iron from mammalian cells and is essential for iron homeostasis. Mutations in SLC40A1 are associated with iron-overload disorders. In addition to ferroportin diseases, SLC40A1 expression is downregulated in various cancer types. Despite the clinical significance of the SLC40A1 transporter, only a few studies have investigated genetic variants in SLC40A1. The present study was performed to identify genetic variations in the SLC40A1 promoter and functionally characterize each variant using in vitro assays. We investigated four haplotypes and five variants in the SLC40A1 promoter. We observed that haplotype 3 (H3) had significantly lower promoter activity than H1, whereas the activity of H4 was significantly higher than that of H1. Luciferase activity of H2 was comparable to that of H1. In addition, four variants of SLC40A1, c.-1355G>C, c.-662C>T, c.-98G>C, and c.-8C>G, showed significantly increased luciferase activity compared to the wild type (WT), whereas c.-750G>A showed significantly decreased luciferase activity compared to the WT. Three transcription factors, cAMP response element-binding protein-1 (CREB-1), chicken ovalbumin upstream promoter transcription factor 1, and hepatic leukemia factor (HLF), were predicted to bind to the promoter regions of SLC40A1 near c.-662C>T, c.-98G>C, and c.-8C>G, respectively. Among these, CREB-1 and HLF bound more strongly to the variant sequences than to the WT and functioned as activators of SLC40A1 transcription. Collectively, our findings indicate that the two SLC40A1 promoter haplotypes affect SLC40A1 transcription, which is regulated by CREB-1 and HLF.

    Show More  
  • Original Article 2024-03-01

    Development of a model to predict vancomycin serum concentration during continuous infusion of vancomycin in critically ill pediatric patients

    Yu Jin Han, Wonjin Jang, Jung Sun Kim et al.

    Abstract : Vancomycin is a frequently used antibiotic in intensive care units, and the patient’s renal clearance affects the pharmacokinetic characteristics of vancomycin. Several advantages have been reported for vancomycin continuous intravenous infusion, but studies on continuous dosing regimens based on patients’ renal clearance are insufficient. The aim of this study was to develop a vancomycin serum concentration prediction model by factoring in a patient’s renal clearance. Children admitted to our institution between July 1, 2021, and July 31, 2022 with records of continuous infusion of vancomycin were included in the study. Sex, age, height, weight, vancomycin dose by weight, interval from the start of vancomycin administration to the time of therapeutic drug monitoring sampling, and vancomycin serum concentrations were analyzed with the linear regression analysis of the mixed effect model. Univariable regression analysis was performed using the vancomycin serum concentration as a dependent variable. It showed that vancomycin dose (p < 0.001) and serum creatinine (p = 0.007) were factors that had the most impact on vancomycin serum concentration. Vancomycin serum concentration was affected by vancomycin dose (p < 0.001) and serum creatinine (p = 0.001) with statistical significance, and a multivariable regression model was obtained as follows: Vancomycin serum concentration (mg/l) = –1.296 + 0.281 × vancomycin dose (mg/kg) + 20.458 × serum creatinine (mg/dl) (adjusted coefficient of determination, R2 = 0.66). This prediction model is expected to contribute to establishing an optimal continuous infusion regimen for vancomycin.

    Show More  
  • Original Article 2024-03-01

    Effects of gas signaling molecule SO2 in cardiac functions of hyperthyroid rats

    Qi Yang, Ting Yang, Xing Liu et al.

    Abstract : Sulfur dioxide (SO2), a novel endogenous gas signaling molecule, is involved in the regulation of cardiac function. Exerting a key role in progression of hyperthyroidism-induced cardiomyopathy (HTC), myocardial fibrosis is mainly caused by myocardial apoptosis, leading to poor treatment outcomes and prognoses. This study aimed to investigate the effect of SO2 on the hyperthyroidism-induced myocardial fibrosis and the underlying regulatory mechanisms. Elisa, Masson staining, Western-Blot, transmission electron microscope, and immunofluorescence were employed to evaluate the myocardial interstitial collagen deposition, endoplasmic reticulum stress (ERS), apoptosis, changes in endogenous SO2, and Hippo pathways from in vitro and in vivo experiments. The study results indicated that the hyperthyroidism-induced myocardial fibrosis was accompanied by decreased cardiac function, and down-regulated ERS, apoptosis, and endogenous SO2-producing enzyme aspartate aminotransferase (AAT)1/2 in cardiac myocytes. In contrast, exogenous SO2 donors improved cardiac function, reduced myocardial interstitial collagen deposition, up-regulated AAT1/2, antagonized ERS and apoptosis, and inhibited excessive activation of Hippo pathway in hyperthyroid rats. In conclusion, the results herein suggested that SO2 inhibited the overactivation of the Hippo pathway, antagonized ERS and apoptosis, and alleviated myocardial fibrosis in hyperthyroid rats. Therefore, this study was expected to identify intervention targets and new strategies for prevention and treatment of HTC.

    Show More  
  • Original Article 2024-03-01

    Exercise alleviates cisplatin-induced toxicity in the hippocampus of mice by inhibiting neuroinflammation and improving synaptic plasticity

    Se Hwan Park, Jeong Rim Ko, and Jin Han

    Abstract : Chemotherapy-induced cognitive impairment is recognized as the most typical symptom in patients with cancer that occurs during and following the chemotherapy treatment. Recently many studies focused on pharmaceutical strategies to control the chemotherapy side effects, however it is far from satisfactory. There may be a need for more effective treatment options. The aim of this study was to investigate the protective effect of exercise on cisplatin-induced neurotoxicity. Eightweek- old C57BL6 mice were separated into three group: normal control (CON, n = 8); cisplatin injection control (Cis-CON, n = 8); cisplatin with aerobic exercise (Cis-EXE, n = 8). Cisplatin was administered intraperitoneally at a dose of 3.5 mg/kg/day. The Cis-EXE group exercise by treadmill running (14–16 m/min for 45 min daily, 3 times/ week) for 12 weeks. Compared to the CON group, the cisplatin injection groups showed significant decrease in body weight and food intake, indicating successful induction of cisplatin toxicity. The Cis-CON group showed significantly increased levels of pro-inflammatory cytokines including IL-6, IL-1β, and TNF-α in the hippocampus, while the Cis-EXE group was significantly decreased in the expression of IL- 6, IL-1β, and TNF-α. In addition, compared to the CON group, the levels of synapserelated proteins including synapsin-1 and -2 were significantly reduced in the Cis- CON group, and there was a significant difference between the Cis-CON and Cis-EXE groups. Antioxidant and apoptosis factors were significantly improved in the Cis-EXE group compared with the Cis-CON group. This study suggest that exercise could be meaningful approach to prevent or improve cisplatin-induced cognitive impairment.

    Show More  
  • Original Article 2024-03-01

    Profiling of endogenous metabolites and changes in intestinal microbiota distribution after GEN-001 (Lactococcus lactis) administration

    Min-Gul Kim, Suin Kim, Ji-Young Jeon et al.

    Abstract : This study aimed to identify metabolic biomarkers and investigate changes in intestinal microbiota in the feces of healthy participants following administration of Lactococcus lactis GEN-001. GEN-001 is a single-strain L. lactis strain isolated from the gut of a healthy human volunteer. The study was conducted as a parallel, randomized, phase 1, open design trial. Twenty healthy Korean males were divided into five groups according to the GEN-001 dosage and dietary control. Groups A, B, C, and D1 received 1, 3, 6, and 9 GEN-001 capsules (1 × 1011 colony forming units), respectively, without dietary adjustment, whereas group D2 received 9 GEN-001 capsules with dietary adjustment. All groups received a single dose. Fecal samples were collected 2 days before GEN-001 administration to 7 days after for untargeted metabolomics and gut microbial metagenomic analyses; blood samples were collected simultaneously for immunogenicity analysis. Levels of phenylalanine, tyrosine, cholic acid, deoxycholic acid, and tryptophan were significantly increased at 5–6 days after GEN-001 administration when compared with predose levels. Compared with predose, the relative abundance (%) of Parabacteroides and Alistipes significantly decreased, whereas that of Lactobacillus and Lactococcus increased; Lactobacillus and tryptophan levels were negatively correlated. A single administration of GEN-001 shifted the gut microbiota in healthy volunteers to a more balanced state as evidenced by an increased abundance of beneficial bacteria, including Lactobacillus, and higher levels of the metabolites that have immunogenic properties.

    Show More  
  • Original Article 2024-03-01

    Somatodendritic organization of pacemaker activity in midbrain dopamine neurons

    Jinyoung Jang, Shin Hye Kim, Ki Bum Um et al.

    Abstract : The slow and regular pacemaking activity of midbrain dopamine (DA) neurons requires proper spatial organization of the excitable elements between the soma and dendritic compartments, but the somatodendritic organization is not clear. Here, we show that the dynamic interaction between the soma and multiple proximal dendritic compartments (PDCs) generates the slow pacemaking activity in DA neurons. In multipolar DA neurons, spontaneous action potentials (sAPs) consistently originate from the axon-bearing dendrite. However, when the axon initial segment was disabled, sAPs emerge randomly from various primary PDCs, indicating that multiple PDCs drive pacemaking. Ca2+ measurements and local stimulation/perturbation experiments suggest that the soma serves as a stably-oscillating inertial compartment, while multiple PDCs exhibit stochastic fluctuations and high excitability. Despite the stochastic and excitable nature of PDCs, their activities are balanced by the large centrally-connected inertial soma, resulting in the slow synchronized pacemaking rhythm. Furthermore, our electrophysiological experiments indicate that the soma and PDCs, with distinct characteristics, play different roles in glutamate- induced burst-pause firing patterns. Excitable PDCs mediate excitatory burst responses to glutamate, while the large inertial soma determines inhibitory pause responses to glutamate. Therefore, we could conclude that this somatodendritic organization serves as a common foundation for both pacemaker activity and evoked firing patterns in midbrain DA neurons.

    Show More  

All Newest Articles

Current Issue

March, 2024
Vol.28 No.2

Current Issue
All Issues

Journal Impact Factor (2022) 2.0
Close ✕