Indexed in SCIE, Scopus, PubMed & PMC
pISSN 1226-4512 eISSN 2093-3827
The transformative impact of large language models on medical writing and publishing: current applications, challenges and future directions
Unraveling flavivirus pathogenesis: from bulk to single-cell RNA-sequencing strategies
Roles of metabotropic glutamate receptor 5 in low [Mg2+]o-induced interictal epileptiform activity in rat hippocampal slices
Chios gum mastic enhance the proliferation and odontogenic differentiation of human dental pulp stem cells
Specific kinesin and dynein molecules participate in the unconventional protein secretion of transmembrane proteins
Biophysically stressed vascular smooth muscle cells express MCP-1 via a PDGFR-β-HMGB1 signaling pathway
Construction and validation of a synthetic phage-displayed nanobody library
Effect of aortic smooth muscle BK channels on mediating chronic intermittent hypoxia-induced vascular dysfunction
Network pharmacology prediction to discover the potential pharmacological action mechanism of Rhizoma Dioscoreae for liver regeneration
Corrigendum to: Cornuside inhibits glucose-induced proliferation and inflammatory response of mesangial cells

Current Issue

    September, 2024 | Volume 28, No. 5
  • Review Article 2024-09-01

    The transformative impact of large language models on medical writing and publishing: current applications, challenges and future directions

    Sangzin Ahn

    Abstract : Large language models (LLMs) are rapidly transforming medical writing and publishing. This review article focuses on experimental evidence to provide a comprehensive overview of the current applications, challenges, and future implications of LLMs in various stages of academic research and publishing process. Global surveys reveal a high prevalence of LLM usage in scientific writing, with both potential benefits and challenges associated with its adoption. LLMs have been successfully applied in literature search, research design, writing assistance, quality assessment, citation generation, and data analysis. LLMs have also been used in peer review and publication processes, including manuscript screening, generating review comments, and identifying potential biases. To ensure the integrity and quality of scholarly work in the era of LLM-assisted research, responsible artificial intelligence (AI) use is crucial. Researchers should prioritize verifying the accuracy and reliability of AI-generated content, maintain transparency in the use of LLMs, and develop collaborative human-AI workflows. Reviewers should focus on higher-order reviewing skills and be aware of the potential use of LLMs in manuscripts. Editorial offices should develop clear policies and guidelines on AI use and foster open dialogue within the academic community. Future directions include addressing the limitations and biases of current LLMs, exploring innovative applications, and continuously updating policies and practices in response to technological advancements. Collaborative efforts among stakeholders are necessary to harness the transformative potential of LLMs while maintaining the integrity of medical writing and publishing.

    Show More  
  • Review Article 2024-09-01

    Unraveling flavivirus pathogenesis: from bulk to single-cell RNA-sequencing strategies

    Doyeong Kim, Seonghun Jeong, and Sang-Min Park

    Abstract : The global spread of flaviviruses has triggered major outbreaks worldwide, significantly impacting public health, society, and economies. This has intensified research efforts to understand how flaviviruses interact with their hosts and manipulate the immune system, underscoring the need for advanced research tools. RNA-sequencing (RNA-seq) technologies have revolutionized our understanding of flavivirus infections by offering transcriptome analysis to dissect the intricate dynamics of virus-host interactions. Bulk RNA-seq provides a macroscopic overview of gene expression changes in virus-infected cells, offering insights into infection mechanisms and host responses at the molecular level. Single-cell RNA sequencing (scRNAseq) provides unprecedented resolution by analyzing individual infected cells, revealing remarkable cellular heterogeneity within the host response. A particularly innovative advancement, virus-inclusive single-cell RNA sequencing (viscRNA-seq), addresses the challenges posed by non-polyadenylated flavivirus genomes, unveiling intricate details of virus-host interactions. In this review, we discuss the contributions of bulk RNA-seq, scRNA-seq, and viscRNA-seq to the field, exploring their implications in cell line experiments and studies on patients infected with various flavivirus species. Comprehensive transcriptome analyses from RNA-seq technologies are pivotal in accelerating the development of effective diagnostics and therapeutics, paving the way for innovative treatments and enhancing our preparedness for future outbreaks.

    Show More  
  • Original Article 2024-09-01

    Roles of metabotropic glutamate receptor 5 in low [Mg2+]o-induced interictal epileptiform activity in rat hippocampal slices

    Ji Seon Yang, Hyun-Jong Jang, Ki-Wug Sung et al.

    Abstract : Group I metabotropic glutamate receptors (mGluRs) modulate postsynaptic neuronal excitability and epileptogenesis. We investigated roles of group I mGluRs on low extracellular Mg2+ concentration ([Mg2+]o)-induced epileptiform activity and neuronal cell death in the CA1 regions of isolated rat hippocampal slices without the entorhinal cortex using extracellular recording and propidium iodide staining. Exposure to Mg2+-free artificial cerebrospinal fluid can induce interictal epileptiform activity in the CA1 regions of rat hippocampal slices. MPEP, a mGluR 5 antagonist, significantly inhibited the spike firing of the low [Mg2+]o-induced epileptiform activity, whereas LY367385, a mGluR1 antagonist, did not. DHPG, a group 1 mGluR agonist, significantly increased the spike firing of the epileptiform activity. U73122, a PLC inhibitor, inhibited the spike firing. Thapsigargin, an ER Ca2+-ATPase antagonist, significantly inhibited the spike firing and amplitude of the epileptiform activity. Both the IP3 receptor antagonist 2-APB and the ryanodine receptor antagonist dantrolene significantly inhibited the spike firing. The PKC inhibitors such as chelerythrine and GF109203X, significantly increased the spike firing. Flufenamic acid, a relatively specific TRPC 1, 4, 5 channel antagonist, significantly inhibited the spike firing, whereas SKF96365, a relatively non-specific TRPC channel antagonist, did not. MPEP significantly decreased low [Mg2+]o DMEM-induced neuronal cell death in the CA1 regions, but LY367385 did not. We suggest that mGluR 5 is involved in low [Mg2+]oinduced interictal epileptiform activity in the CA1 regions of rat hippocampal slices through PLC, release of Ca2+ from intracellular stores and PKC and TRPC channels, which could be involved in neuronal cell death.

    Show More  
  • Original Article 2024-09-01

    Chios gum mastic enhance the proliferation and odontogenic differentiation of human dental pulp stem cells

    Hyun-Su Baek, Se-Jin Park, Eun-Gyung Lee et al.

    Abstract : Dental pulp stem cells (DPSCs) are a type of adult stem cell present in the dental pulp tissue. They possess a higher proliferative capacity than bone marrow mesenchymal stem cells. Their ease of collection from patients makes them well-suited for tissue engineering applications, such as tooth and nerve regeneration. Chios gum mastic (CGM), a resin extracted from the stems and leaves of Pistacia lentiscus var. Chia, has garnered attention for its potential in tissue regeneration. This study aims to confirm alterations in cell proliferation rates and induce differentiation in human DPSCs (hDPSCs) through CGM treatment, a substance known for effectively promoting odontogenic differentiation. Administration of CGM to hDPSC cells was followed by an assessment of cell survival, proliferation, and odontogenic differentiation through protein and gene analysis. The study revealed that hDPSCs exhibited low sensitivity to CGM toxicity. CGM treatment induced cell proliferation by activating cell-cycle proteins through the Wnt/β-catenin pathway. Additionally, the study demonstrated that CGM enhances alkaline phosphatase activation by upregulating the expression of collagen type I, a representative matrix protein of dentin. This activation of markers associated with odontogenic and bone differentiation ultimately facilitated the mineralization of hDPSCs. This study concludes that CGM, as a natural substance, fosters the cell cycle and cell proliferation in hDPSCs. Furthermore, it triggers the transcription of odontogenic and osteogenic markers, thereby facilitating odontogenic differentiation.

    Show More  
  • Original Article 2024-09-01

    Specific kinesin and dynein molecules participate in the unconventional protein secretion of transmembrane proteins

    Sung Ho Eun, Shin Hye Noh, and Min Goo Lee

    Abstract : Secretory proteins, including plasma membrane proteins, are generally known to be transported to the plasma membrane through the endoplasmic reticulum- to-Golgi pathway. However, recent studies have revealed that several plasma membrane proteins and cytosolic proteins lacking a signal peptide are released via an unconventional protein secretion (UcPS) route, bypassing the Golgi during their journey to the cell surface. For instance, transmembrane proteins such as the misfolded cystic fibrosis transmembrane conductance regulator (CFTR) protein and the Spike protein of coronaviruses have been observed to reach the cell surface through a UcPS pathway under cell stress conditions. Nevertheless, the precise mechanisms of the UcPS pathway, particularly the molecular machineries involving cytosolic motor proteins, remain largely unknown. In this study, we identified specific kinesins, namely KIF1A and KIF5A, along with cytoplasmic dynein, as critical players in the unconventional trafficking of CFTR and the SARS-CoV-2 Spike protein. Gene silencing results demonstrated that knockdown of KIF1A, KIF5A, and the KIF-associated adaptor protein SKIP, FYCO1 significantly reduced the UcPS of △F508-CFTR. Moreover, gene silencing of these motor proteins impeded the UcPS of the SARS-CoV-2 Spike protein. However, the same gene silencing did not affect the conventional Golgimediated cell surface trafficking of wild-type CFTR and Spike protein. These findings suggest that specific motor proteins, distinct from those involved in conventional trafficking, are implicated in the stress-induced UcPS of transmembrane proteins.

    Show More  
  • Original Article 2024-09-01

    Biophysically stressed vascular smooth muscle cells express MCP-1 via a PDGFR-β-HMGB1 signaling pathway

    Ji Won Kim, Ju Yeon Kim, Hee Eun Bae et al.

    Abstract : Vascular smooth muscle cells (VSMCs) under biophysical stress play an active role in the progression of vascular inflammation, but the precise mechanisms are unclear. This study examined the cellular expression of monocyte chemoattractant protein 1 (MCP-1) and its related mechanisms using cultured rat aortic VSMCs stimulated with mechanical stretch (MS, equibiaxial cyclic stretch, 60 cycles/ min). When the cells were stimulated with 10% MS, MCP-1 expression was markedly increased compared to those in the cells stimulated with low MS intensity (3% or 5%). An enzyme-linked immunosorbent assay revealed an increase in HMGB1 released into culture media from the cells stimulated with 10% MS compared to those stimulated with 3% MS. A pretreatment with glycyrrhizin, a HMGB1 inhibitor, resulted in the marked attenuation of MCP-1 expression in the cells stimulated with 10% MS, suggesting a key role of HMGB1 on MCP-1 expression. Western blot analysis revealed higher PDGFR-α and PDGFR-β expression in the cells stimulated with 10% MS than 3% MS-stimulated cells. In the cells deficient of PDGFR-β using siRNA, but not PDGFR-α, HMGB1 released into culture media was significantly attenuated in the 10% MS-stimulated cells. Similarly, MCP-1 expression induced in 10% MS-stimulated cells was also attenuated in cells deficient of PDGFR-β. Overall, the PDGFR-β signaling plays a pivotal role in the increased expression of MCP-1 in VSMCs stressed with 10% MS. Therefore, targeting PDGFR-β signaling in VSMCs might be a promising therapeutic strategy for vascular complications in the vasculatures under excessive biophysical stress.

    Show More  
  • Original Article 2024-09-01

    Construction and validation of a synthetic phage-displayed nanobody library

    Minju Kim, Xuelian Bai, Hyewon Im et al.

    Abstract : Nanobodies derived from camelids and sharks offer unique advantages in therapeutic applications due to their ability to bind to epitopes that were previously inaccessible. Traditional methods of nanobody development face challenges such as ethical concerns and antigen toxicity. Our study presents a synthetic, phagedisplayed nanobody library using trinucleotide-directed mutagenesis technology, which allows precise amino acid composition in complementarity-determining regions (CDRs), with a focus on CDR3 diversity. This approach avoids common problems such as frameshift mutations and stop codon insertions associated with other synthetic antibody library construction methods. By analyzing FDA-approved nanobodies and Protein Data Bank sequences, we designed sub-libraries with different CDR3 lengths and introduced amino acid substitutions to improve solubility. The validation of our library through the successful isolation of nanobodies against targets such as PD-1, ATXN1 and STAT3 demonstrates a versatile and ethical platform for the development of high specificity and affinity nanobodies and represents a significant advance in biotechnology.

    Show More  
  • Original Article 2024-09-01

    Effect of aortic smooth muscle BK channels on mediating chronic intermittent hypoxia-induced vascular dysfunction

    Ping Zhang, Pengtao Zou, Xiao Huang et al.

    Abstract : Chronic intermittent hypoxia (CIH) can lead to vascular dysfunction and increase the risk of cardiovascular diseases, cerebrovascular diseases, and arterial diseases. Nevertheless, mechanisms underlying CIH-induced vascular dysfunction remain unclear. Herein, this study analyzed the role of aortic smooth muscle calciumactivated potassium (BK) channels in CIH-induced vascular dysfunction. CIH models were established in rats and rat aortic smooth muscle cells (RASMCs). Hemodynamic parameters such as mean blood pressure (MBP), diastolic blood pressure (DBP), and systolic blood pressure (SBP) were measured in rats, along with an assessment of vascular tone. NO and ET-1 levels were detected in rat serum, and the levels of ET-1, NO, eNOS, p-eNOS, oxidative stress markers (ROS and MDA), and inflammatory factors (IL-6 and TNF-α) were tested in aortic tissues. The Ca2+ concentration in RASMCs was investigated. The activity of BK channels (BKα and BKβ) was evaluated in aortic tissues and RASMCs. SBP, DBP, and MBP were elevated in CIH-treated rats, along with endothelial dysfunction, cellular edema and partial detachment of endothelial cells. BK channel activity was decreased in CIH-treated rats and RASMCs. BK channel activation increased eNOS, p-eNOS, and NO levels while lowering ET-1, ROS, MDA, IL-6, and TNF-α levels in CIH-treated rats. Ca2+ concentration increased in RASMCs following CIH modeling, which was reversed by BK channel activation. BK channel inhibitor (Iberiotoxin) exacerbated CIH-induced vascular disorders and endothelial dysfunction. BK channel activation promoted vasorelaxation while suppressing vascular endothelial dysfunction, inflammation, and oxidative stress, thereby indirectly improving CIH-induced vascular dysfunction.

    Show More  
  • Original Article 2024-09-01

    Network pharmacology prediction to discover the potential pharmacological action mechanism of Rhizoma Dioscoreae for liver regeneration

    Wei Liu, Wenyu Wang, Chenglong Tian et al.

    Abstract : Improving liver regeneration (LR) remains a medical issue, and there is currently a lack of safe and effective drugs for LR. Rhizoma Dioscoreae (SanYak, SY) is a traditional Chinese medicine. However, the underlying action mechanism of SY treatment for LR is yet to be fully elucidated. To explore the mechanism by which SY affects LR, we have conducted a series of methods for network pharmacological analysis, molecular docking, and in vivo experimental validation in mice. Overall, 9 compounds and 30 predicted target genes of SY were found to be associated with the therapeutic effects of LR. Compared with the model group, hematoxylin and eosin staining revealed that the mice with preoperative drug intervention possessed fewer postoperative hepatocyte bubbles and relatively regular morphology. Furthermore, the serum alanine transaminase and aspartate aminotransferase levels were reduced, immunohistochemistry revealed elevated proliferating cell nuclear antigen positivity rate, and Western blotting demonstrated that the phospho-protein kinase B (AKT)/AKT ratio was downregulated and that vascular endothelial growth factor A (VEGFA) expression levels were upregulated. This study explored dioscin, the main active ingredient of SY, and its potential therapeutic effects on LR. It repairs damaged liver following surgery and promotes liver cell proliferation. The action mechanism comprises reducing AKT phosphorylation levels and upregulating VEGFA expression levels. Thus, this study provides a new direction for further research on the mechanism of SY promoting LR.

    Show More  

All Newest Articles

Current Issue

September, 2024
Vol.28 No.5

Current Issue
All Issues

Journal Impact Factor (2023) 1.6

Most Read

Close ✕