pISSN 1226-4512 eISSN 2093-3827
Loss of RAR-α and RXR-α and enhanced caspase-3-dependent apoptosis in N-acetyl-p-aminophenol-induced liver injury in mice is tissue factor dependent
Sitagliptin attenuates endothelial dysfunction independent of its blood glucose controlling effect
Anti-inflammatory effects of DA-9601, an extract of Artemisia asiatica, on aceclofenac-induced acute enteritis
Melatonin modulates nitric oxide-regulated WNK-SPAK/OSR1-NKCC1 signaling in dorsal raphe nucleus of rats
Apoptin gene delivery by a PAMAM dendrimer modified with a nuclear localization signal peptide as a gene carrier for brain cancer therapy

Current Issue

    September, 2021 | Volume 25, No. 5
  • Original Article 2021-09-01

    Loss of RAR-α and RXR-α and enhanced caspase-3-dependent apoptosis in N-acetyl-p-aminophenol-induced liver injury in mice is tissue factor dependent

    Mohamed Sadek Abdel-Bakky, Gouda Kamel Helal, El-Sayed Mohamed El-Sayed et al.

    Abstract : Tissue factor (TF) activates the coagulation system and has an important role in the pathogenesis of various diseases. Our previous study stated that retinoid receptors (RAR-α and RXR-α) are released as a lipid droplet in monocrotaline/ lipopolysaccharide-induced idiosyncratic liver toxicity in mice. Herein, the interdependence between the release of retinoid receptors RAR-α and RXR-α and TF in Nacetyl-p-aminophenol (APAP)-induced mice liver toxicity, is investigated. Serum alanine transaminase (ALT) level, platelet and white blood cells (WBCs) counts, protein expression of fibrin, TF, cyclin D1 and cleaved caspase-3 in liver tissues are analyzed. In addition, histopathological evaluation and survival study are also performed. The results indicate that using of TF-antisense (TF-AS) deoxyoligonucleotide (ODN) injection (6 mg/kg), to block TF protein synthesis, significantly restores the elevated level of ALT and WBCs and corrects thrombocytopenia in mice injected with APAP. TF-AS prevents the peri-central overexpression of liver TF, fibrin, cyclin D1 and cleaved caspase- 3. The release of RXR-α and RAR-α droplets, in APAP treated sections, is inhibited upon treatment with TF-AS. In conclusion, the above findings designate that the released RXR-α and RAR-α in APAP liver toxicity is TF dependent. Additionally, the enhancement of cyclin D1 to caspase-3-dependent apoptosis can be prevented by blocking of TF protein synthesis.

    Show More  
  • Original Article 2021-09-01

    Formosanin C attenuates lipopolysaccharide-induced inflammation through nuclear factor-κB inhibition in macrophages

    Limin Yin, Chaohong Shi, Zhongchen Zhang et al.

    Abstract : Extended inflammation and cytokine production pathogenically contribute to a number of inflammatory disorders. Formosanin C (FC) is the major diosgenin saponin found in herb Paris formosana Hayata (Liliaceae), which has been shown to exert anti-cancer and immunomodulatory functions. In this study, we aimed to investigate anti-inflammatory activity of FC and the underlying molecular mechanism. RAW264.7 macrophages were stimulated with lipopolysaccharide (LPS) or pretreated with FC prior to being stimulated with LPS. Thereafter, the macrophages were subjected to analysis of the expression levels of pro-inflammatory mediators, including nitric oxide (NO), prostaglandin E2 (PGE), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6, as well as two relevant enzymes, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2). The analysis revealed that FC administration blunted LPS-induced production of NO and PGE in a dose-dependent manner, while the expression of iNOS and COX-2 at both mRNA and protein levels was inhibited in LPS-stimulated macrophages pre-treated with FC. Moreover, LPS stimulation upregulated mRNA expression and medium release of TNF-α, IL-1β, and IL- 6, whereas this effect was blocked upon FC pre-administration. Mechanistic studies showed that inhibitory effects of FC on LPS-induced inflammation were associated with a downregulation of IκB kinase, IκB, and p65/NF-κB pathway. Taken together, these data suggest that FC possesses an inflammation-suppressing activity, thus being a potential agent for the treatment of inflammation-associated disorders.

    Show More  
  • Original Article 2021-09-01

    Gastroprotective effect of cirsilineol against hydrochloric acid/ethanol-induced gastric ulcer in rats

    Guojin Gong, Rigetu Zhao, Yuhui Zhu et al.

    Abstract : This study was designed to evaluate the gastroprotective activity of cirsilineol in hydrochloric acid (HCl)/ethanol-induced gastric ulcer model. Cirsilineol was administered at the doses of 20 and 40 mg/kg in HCl/ethanol-induced rats. The gastroprotective ability was verified by determining the ulcer score, total acidity, hemoglobin, inflammatory cytokines, lipid peroxides, and enzymatic antioxidants superoxide dismutase (SOD) and catalase (CAT) in gastric tissue and serum biochemical analysis. The results showed a favorable increase in the hemoglobin level, antioxidant enzymes (SOD and CAT), restored electrochemical balance (carbon dioxide & anion gap) while a noticeable decrease in ulcer index, total acidity, lipid peroxides, inflammatory cytokines (interleukin-1 beta [IL-1β], IL-6, and tumor necrosis factor alpha) in rats treated with the cirsilineol. The serum biochemical analysis on liver markers (alkaline phosphatases, alanine aminotransferase, and aspartate aminotransferase), kidney markers (urea, creatinine, albumin, globulin, total protein), and lipid profile (triglyceride, high-density lipoprotein, total cholesterol) were attenuated by cirsilineol treatment in rats. Histopathology showed enhanced gastric protection and preserved the integrity of gastric mucosa upon cirsilineol administration. These results ultimately suggest that cirsilineol has gastroprotective effects that prevent the development of gastric ulcer.

    Show More  
  • Original Article 2021-09-01

    Curcumin attenuates renal ischemia reperfusion injury via JNK pathway with the involvement of p300/CBP-mediated histone acetylation

    Lu Yang, Xiaoxiang Chen, Zirong Bi et al.

    Abstract : Apoptosis is proved responsible for renal damage during ischemia/reperfusion. The regulation for renal apoptosis induced by ischemia/reperfusion injury (IRI) has still been unclearly characterized to date. In the present study, we investigated the regulation of histone acetylation on IRI-induced renal apoptosis and the molecular mechanisms in rats with the application of curcumin possessing a variety of biological activities involving inhibition of apoptosis. Sprague–Dawley rats were randomized into four experimental groups (SHAM, IRI, curcumin, SP600125). Results showed that curcumin significantly decreased renal apoptosis and caspase-3/-9 expression and enhanced renal function in IRI rats. Treatment with curcumin in IRI rats also led to the decrease in expression of p300/cyclic AMP response element-binding protein (CBP) and activity of histone acetyltransferases (HATs). Reduced histone H3 lysine 9 (H3K9) acetylation was found near the promoter region of caspase-3/-9 after curcumin treatment. In a similar way, SP600125, an inhibitor of c-Jun N-terminal kinase (JNK), also attenuated renal apoptosis and enhanced renal function in IRI rats. In addition, SP600125 suppressed the binding level of p300/CBP and H3K9 acetylation near the promoter region of caspase-3/-9, and curcumin could inhibit JNK phosphorylation like SP600125. These results indicate that curcumin could attenuate renal IRI via JNK/p300/CBP-mediated anti-apoptosis signaling.

    Show More  
  • Original Article 2021-09-01

    Sitagliptin attenuates endothelial dysfunction independent of its blood glucose controlling effect

    Xin-Miao Chang, Fei Xiao, Qi Pan et al.

    Abstract : Although the contributions of sitagliptin to endothelial dysfunction in diabetes mellitus were previously reported, the mechanisms still undefined. Autophagy plays an important role in the development of diabetes mellitus, but its role in diabetic macrovascular complications is unclear. This study aims to observe the effect of sitagliptin on macrovascular endothelium in diabetes and explore the role of autophagy in this process. Diabetic rats were induced through administration of high-fat diet and intraperitoneal injection of streptozotocin. Then diabetic rats were treated with or without sitagliptin for 12 weeks. Endothelial damage and autophagy were measured. Human umbilical vein endothelial cells were cultured either in normal glucose or in high glucose medium and intervened with different concentrations of sitagliptin. Rapamycin was used to induce autophagy. Cell viability, apoptosis and autophagy were detected. The expressions of proteins in c-Jun N-terminal kinase (JNK)-Bcl-2-Beclin-1 pathway were measured. Sitagliptin attenuated injuries of endothelium in vivo and in vitro. The expression of microtubuleassociated protein 1 light chain 3 II (LC3II) and beclin-1 were increased in aortas of diabetic rats and cells cultured with high-glucose, while sitagliptin inhibited the over-expression of LC3II and beclin-1. In vitro pre-treatment with sitagliptin decreased rapamycin-induced autophagy. However, after pretreatment with rapamycin, the protective effect of sitagliptin on endothelial cells was abolished. Further studies revealed sitagliptin increased the expression of Bcl-2, while inhibited the expression of JNK in vivo. Sitagliptin attenuates injuries of vascular endothelial cells caused by high glucose through inhibiting over-activated autophagy. JNK-Bcl-2-Beclin-1 pathway may be involved in this process.

    Show More  
  • Original Article 2021-09-01

    Anti-inflammatory effects of DA-9601, an extract of Artemisia asiatica, on aceclofenac-induced acute enteritis

    Ju Hwan Kim, Chang Yell Shin, Sun Woo Jang et al.

    Abstract : DA-9601 is an extract obtained from Artemisia asiatica, which has been reported to have anti-inflammatory effects on gastrointestinal lesions; however, its possible anti-inflammatory effects on the small intestine have not been studied yet. Therefore, in this study, we investigated the protective effects of DA-9601 against the ACF-induced small intestinal inflammation. Inflammation of the small intestine was confirmed by histological studies and the changes in the CD4+ T cell fraction induced by the inflammation-related cytokines, and the inflammatory reactions were analyzed. Multifocal discrete small necrotic ulcers with intervening normal mucosa were frequently observed after treatment with ACF. The expression of IL-6 , IL-17, and TNF-α genes was increased in the ACF group; however, it was found to have been significantly decreased in the DA-9601 treated group. In addition, DA-9601 significantly decreased the levels of proinflammatory mediators such as IL-1β, GMCSF, IFN-γ, and TNF-α; the anti-inflammatory cytokine IL-10, on the other hand, was observed to have increased. It is known that inflammatory mediators related to T cell imbalance and dysfunction continuously activate the inflammatory response, causing chronic tissue damage. The fractions of IFN-γ+ Th1 cells, IL-4+ Th2 cells, IL-9+ Th9 cells, IL-17+ Th17 cells, and Foxp3+ Treg cells were significantly decreased upon DA-9601 treatment. These data suggest that the inflammatory response induced by ACF is reduced by DA-9601 via lowering of the expression of genes encoding the inflammatory cytokines and the concentration of inflammatory mediators. Furthermore, DA-9601 inhibited the acute inflammatory response mediated by T cells, resulting in an improvement in ACF-induced enteritis.

    Show More  
  • Original Article 2021-09-01

    Melatonin modulates nitric oxide-regulated WNK-SPAK/OSR1-NKCC1 signaling in dorsal raphe nucleus of rats

    Hye Jin Yang, Mi Jung Kim, Sung Soo Kim et al.

    Abstract : The sleep-wake cycle is regulated by the alternating activity of sleep- and wake-promoting neurons. The dorsal raphe nucleus (DRN) secretes 5-hydroxytryptamine (5-HT, serotonin), promoting wakefulness. Melatonin secreted from the pineal gland also promotes wakefulness in rats. Our laboratory recently demonstrated that daily changes in nitric oxide (NO) production regulates a signaling pathway involving with-no-lysine kinase (WNK), Ste20-related proline alanine rich kinase (SPAK)/oxidative stress response kinase 1 (OSR1), and cation-chloride co-transporters (CCC) in rat DRN serotonergic neurons. This study was designed to investigate the effect of melatonin on NO-regulated WNK-SPAK/OSR1-CCC signaling in wake-inducing DRN neurons to elucidate the mechanism underlying melatonin’s wake-promoting actions in rats. Ex vivo treatment of DRN slices with melatonin suppressed neuronal nitric oxide synthase (nNOS) expression and increased WNK4 expression without altering WNK1, 2, or 3. Melatonin increased phosphorylation of OSR1 and the expression of sodium-potassium-chloride co-transporter 1 (NKCC1), while potassium-chloride cotransporter 2 (KCC2) remained unchanged. Melatonin increased the expression of tryptophan hydroxylase 2 (TPH2, serotonin-synthesizing enzyme). The present study suggests that melatonin may promote its wakefulness by modulating NO-regulated WNK-SPAK/OSR1-KNCC1 signaling in rat DRN serotonergic neurons.

    Show More  
  • Original Article 2021-09-01

    Dronedarone hydrochloride enhances the bioactivity of endothelial progenitor cells via regulation of the AKT signaling pathway

    Jian Zhang, Thi Hong Van Le, Vinoth Kumar Rethineswaran et al.

    Abstract : Cardiovascular disease (CVD) and its complications are the leading cause of morbidity and mortality in the world. Because of the side effects and incomplete recovery from current therapy, stem cell therapy emerges as a potential therapy for CVD treatment, and endothelial progenitor cell (EPC) is one of the key stem cells used for therapeutic applications. The effect of this therapy required the expansion of EPC function. To enhance the EPC activation, proliferation, and angiogenesis using dronedarone hydrochloride (DH) is the purpose of this study. DH received approval for atrial fibrillation treatment and its cardiovascular protective effects were already reported. In this study, DH significantly increased EPC proliferation, tube formation, migration, and maintained EPCs surface marker expression. In addition, DH treatment up-regulated the phosphorylation of AKT and reduced the reactive oxygen species production. In summary, the cell priming by DH considerably improved the functional activity of EPCs, and the use of which might be a novel strategy for CVD treatment.

    Show More  
  • Original Article 2021-09-01

    Apoptin gene delivery by a PAMAM dendrimer modified with a nuclear localization signal peptide as a gene carrier for brain cancer therapy

    Yoonhee Bae, Jell Lee, Changwon Kho et al.

    Abstract : In this study, we aimed to synthesize PAMAMG3 derivatives (PAMAMG3-KRRR and PAMAMG3-HKRRR), using KRRR peptides as a nuclear localization signal and introduced histidine residues into the KRRR-grafted PAMAMG3 for delivering a therapeutic, carcinoma cell-selective apoptosis gene, apoptin into human primary glioma (GBL-14) cells and human dermal fibroblasts. We examined their cytotoxicity and gene expression using luciferase activity and enhanced green fluorescent protein PAMAMG3 derivatives in both cell lines. We treated cells with PAMAMG3 derivative/apoptin complexes and investigated their intracellular distribution using confocal microscopy. The PAMAMG3-KRRR and PAMAMG3-HKRRR dendrimers were found to escape from endolysosomes into the cytosol. The JC-1 assay, glutathione levels, and Annexin V staining results showed that apoptin triggered cell death in GBL-14 cells. Overall, these findings indicated that the PAMAMG3-HKRRR/apoptin complex is a potential candidate for an effective nonviral gene delivery system for brain tumor therapy in vitro.

    Show More  
  • Original Article 2021-09-01

    Docetaxel-loaded PLGA nanoparticles to increase pharmacological sensitivity in MDA-MB-231 and MCF-7 breast cancer cells

    Phuong Tran, Thu Nhan Nguyen, Yeseul Lee et al.

    Abstract : This study aimed to develop docetaxel (DTX) loaded poly(lactic-coglycolic acid) (PLGA) nanoparticles (DTX-NPs) and to evaluate the different pharmacological sensitivity of NPs to MCF-7 and MDA-MB-231 breast cancer cells. NPs containing DTX or coumarin-6 were prepared by the nanoprecipitation method using PLGA as a polymer and d-α-tocopherol polyethylene glycol 1000 succinate (TPGS) as a surfactant. The physicochemical properties of NPs were characterized. In vitro anticancer effect and cellular uptake were evaluated in breast cancer cells. The particle size and zeta potential of the DTX-NPs were 160.5 ± 3.0 nm and –26.7 ± 0.46 mV, respectively. The encapsulation efficiency and drug loading were 81.3 ± 1.85% and 10.6 ± 0.24%, respectively. The in vitro release of DTX from the DTX-NPs was sustained at pH 7.4 containing 0.5% Tween 80. The viability of MDA-MB-231 and MCF-7 cells with DTX-NPs was 37.5 ± 0.5% and 30.3 ± 1.13%, respectively. The IC50 values of DTX-NPs were 3.92- and 6.75-fold lower than that of DTX for MDA-MB-231 cells and MCF-7 cells, respectively. The cellular uptake of coumarin-6-loaded PLGA-NPs in MCF-7 cells was significantly higher than that in MDA-MB-231 cells. The pharmacological sensitivity in breast cancer cells was higher on MCF-7 cells than on MDA-MB-231 cells. In conclusion, we successfully developed DTX-NPs that showed a great potential for the controlled release of DTX. DTX-NPs are an effective formulation for improving anticancer effect in breast cancer cells.

    Show More  
  • Original Article 2021-09-01

    5-HT1A receptors mediate the analgesic effect of rosavin in a mouse model of oxaliplatin-induced peripheral neuropathic pain

    Daxian Li, Sangwon Park, Kyungjoon Lee et al.

    Abstract : Oxaliplatin, a third-generation platinum derivative, is the mainstay of current antineoplastic medications for advanced colorectal cancer therapy. However, peripheral neuropathic complications, especially cold allodynia, undermine the lifeprolonging outcome of this anti-cancer agent. Rosavin, a phenylpropanoid derived originally from Rhodiola rosea, exhibits a wide range of therapeutic properties. The present study explored whether and how rosavin alleviates oxaliplatin-induced cold hypersensitivity in mice. In the acetone drop test, cold allodynia behavior was observed from days 3 to 5 after a single injection of oxaliplatin (6 mg/kg, i.p.). Cold allodynia was significantly attenuated following rosavin treatment (10 mg/kg, i.p.). Specific endogenous 5-HT depletion by three consecutive pretreatments with parachlorophenylalanine (150 mg/kg/day, i.p.) abolished the analgesic action of rosavin; this effect was not observed following pretreatment with naloxone (opioid receptor antagonist, 10 mg/kg, i.p.). Furthermore, 5-HT1A receptor antagonist WAY-100635 (0.16 mg/kg, i.p.), but not 5-HT3 receptor antagonist MDL-72222 (1 mg/kg, i.p.), blocked rosavin-induced analgesia. These results suggest that rosavin may provide a novel approach to alleviate oxaliplatin-induced cold allodynia by recruiting the activity of 5-HT1A receptors.

    Show More  

All Newest Articles

Current Issue

September, 2021
Vol.25 No.5

Current Issue
All Issues

Journal Impact Factor (2020) 2.016

Most Read

Close ✕