Indexed in SCIE, Scopus, PubMed & PMC
pISSN 1226-4512 eISSN 2093-3827
The physiological and pharmacological roles of prostaglandins in hair growth
Myricetin prevents sleep deprivation-induced cognitive impairment and neuroinflammation in rat brain via regulation of brain-derived neurotropic factor
The role of discoid domain receptor 1 on renal tubular epithelial pyroptosis in diabetic nephropathy
Antitumor effects of valdecoxib on hypopharyngeal squamous carcinoma cells
Arctigenin induces caspase-dependent apoptosis in FaDu human pharyngeal carcinoma cells
Involvement of adaptor protein, phosphotyrosine interacting with PH domain and leucine zipper 1 in diallyl trisulfide-induced cytotoxicity in hepatocellular carcinoma cells
The WNT/Ca2+ pathway promotes atrial natriuretic peptide secretion by activating protein kinase C/transforming growth factor-β activated kinase 1/activating transcription factor 2 signaling in isolated beating rat atria
Cell-cell contacts via N-cadherin induce a regulatory renin secretory phenotype in As4.1 cells
Thermotherapy as an alternative to exercise for metabolic health in obese postmenopausal women: focus on circulating irisin level
Neogambogic acid relieves myocardial injury induced by sepsis via p38 MAPK/NF-κB pathway
Lactate promotes vascular smooth muscle cell switch to a synthetic phenotype by inhibiting miR-23b expression
Group 1 metabotropic glutamate receptor 5 is involved in synaptically-induced Ca2+-spikes and cell death in cultured rat hippocampal neurons
Gaseous signal molecule SO2 regulates autophagy through PI3K/AKT pathway inhibits cardiomyocyte apoptosis and improves myocardial fibrosis in rats with type II diabetes
Corrigendum to: Chronic cerebral hypoperfusion and plasticity of the posterior cerebral artery following permanent bilateral common carotid artery occlusion

Current Issue

    November, 2022 | Volume 26, No. 6
  • Review Article 2022-11-01

    The physiological and pharmacological roles of prostaglandins in hair growth

    Dong Wook Shin*

    Abstract : Hair loss is a common status found among people of all ages. Since the role of hair is much more related to culture and individual identity, hair loss can have a great influence on well-being and quality of life. It is a disorder that is observed in only scalp patients with androgenetic alopecia (AGA) or alopecia areata caused by stress or immune response abnormalities. Food and Drug Administration (FDA)-approved therapeutic medicines such as finasteride, and minoxidil improve hair loss temporarily, but when they stop, they have a limitation in that hair loss occurs again. As an alternative strategy for improving hair growth, many studies reported that there is a relationship between the expression levels of prostaglandins (PGs) and hair growth. Four major PGs such as prostaglandin D2 (PGD2), prostaglandin I2 (PGI2), prostaglandin E2 (PGE), and prostaglandin F2 alpha (PGF) are spatiotemporally expressed in hair follicles and are implicated in hair loss. This review investigated the physiological roles and pharmacological interventions of the PGs in the pathogenesis of hair loss and provided these novel insights for clinical therapeutics for patients suffering from alopecia.

    Show More  
  • Original Article 2022-11-01

    Myricetin prevents sleep deprivation-induced cognitive impairment and neuroinflammation in rat brain via regulation of brain-derived neurotropic factor

    Bongjun Sur and Bombi Lee

    Abstract : Memory formation in the hippocampus is formed and maintained by circadian clock genes during sleep. Sleep deprivation (SD) can lead to memory impairment and neuroinflammation, and there remains no effective pharmacological treatment for these effects. Myricetin (MYR) is a common natural flavonoid that has various pharmacological activities. In this study, we investigated the effects of MYR on memory impairment, neuroinflammation, and neurotrophic factors in sleep-deprived rats. We analyzed SD-induced cognitive and spatial memory, as well as pro-inflammatory cytokine levels during SD. SD model rats were intraperitoneally injected with 10 and 20 mg/kg/day MYR for 14 days. MYR administration significantly ameliorated SD-induced cognitive and spatial memory deficits; it also attenuated the SD-induced inflammatory response associated with nuclear factor kappa B activation in the hippocampus. In addition, MYR enhanced the mRNA expression of brain-derived neurotropic factor (BDNF) in the hippocampus. Our results showed that MYR improved memory impairment by means of anti-inflammatory activity and appropriate regulation of BDNF expression. Our findings suggest that MYR is a potential functional ingredient that protects cognitive function from SD.

    Show More  
  • Original Article 2022-11-01

    The role of discoid domain receptor 1 on renal tubular epithelial pyroptosis in diabetic nephropathy

    Weichen Zhao, Chunyuan He, Junjie Jiang et al.

    Abstract : Pyroptosis, a form of cell death associated with inflammation, is known to be involved in diabetic nephropathy (DN), and discoid domain receptor 1 (DDR1), an inflammatory regulatory protein, is reported to be associated with diabetes. However, the mechanism underlying DDR1 regulation and pyroptosis in DN remains unknown. We aimed to investigate the effect of DDR1 on renal tubular epithelial cell pyroptosis and the mechanism underlying DN. In this study, we used high glucose (HG)-treated HK-2 cells and rats with a single intraperitoneal injection of streptozotocin as DN models. Subsequently, the expression of pyroptosis-related proteins (cleaved caspase-1, GSDMD-N, Interleukin-1β [IL-1β], and interleukin-18 [IL-18]), DDR1, phosphorylated NF-κB (p-NF-κB), and NLR family pyrin domain-containing 3 (NLRP3) inflammasomes were determined through Western blotting. IL-1β and IL-18 levels were determined using ELISA. The rate of pyroptosis was assessed by propidium iodide (PI) staining. The results revealed upregulated expression of pyroptosis-related proteins and increased concentration of IL-1β and IL-18, accompanied by DDR1, p-NF-κB, and NLRP3 upregulation in DN rat kidney tissues and HG-treated HK-2 cells. Moreover, DDR1 knockdown in the background of HG treatment resulted in inhibited expression of pyroptosis-related proteins and attenuation of IL-1β and IL-18 production and PI-positive cell frequency via the NF-κB/NLRP3 pathway in HK-2 cells. However, NLRP3 overexpression reversed the effect of DDR1 knockdown on pyroptosis. In conclusion, we demonstrated that DDR1 may be associated with pyroptosis, and DDR1 knockdown inhibited HG-induced renal tubular epithelial cell pyroptosis. The NF-κB/NLRP3 pathway is probably involved in the underlying mechanism of these findings.

    Show More  
  • Original Article 2022-11-01

    Antitumor effects of valdecoxib on hypopharyngeal squamous carcinoma cells

    Nguyen Thi Kieu Trang and Hoon Yoo

    Abstract : The antitumoral effects of valdecoxib (Val), an United States Food and Drug Administration-approved anti-inflammatory drug that was withdrawn due to the side effects of increased risk of cardiovascular adverse events, were investigated in hypopharyngeal squamous cell carcinoma cells by performing a cell viability assay, transwell assay, immunofluorescence imaging, and Western blotting. Val markedly inhibited cell viability with an IC50 of 67.3 μM after 48 h of treatment, and also downregulated cell cycle proteins such as Cdks and their regulatory cyclin units. Cell migration and invasion were severely suppressed by inhibiting integrin α4/FAK expression. In addition, Val activated the cell cycle checkpoint CHK2 in response to excessive DNA damage, which led to the activation of caspase-3/9 and induced caspase-dependent apoptosis. Furthermore, the signaling cascades of the PI3K/AKT/mTOR and mitogen-activated protein kinase pathways were significantly inhibited by Val treatment. Taken together, our results indicate that Val can be used for the treatment of hypopharyngeal squamous cell carcinoma.

    Show More  
  • Original Article 2022-11-01

    Arctigenin induces caspase-dependent apoptosis in FaDu human pharyngeal carcinoma cells

    Kyeong-Rok Kang, Jae-Sung Kim, HyangI Lim et al.

    Abstract : The present study was carried out to investigate the effect of Arctigenin on cell growth and the mechanism of cell death elicited by Arctigenin were examined in FaDu human pharyngeal carcinoma cells. To determine the apoptotic activity of Arctigenin in FaDu human pharyngeal carcinoma cells, cell viability assay, DAPI staining, caspase activation analysis, and immunoblotting were performed. Arctigenin inhibited the growth of cells in a dose-dependent manner and induced nuclear condensation and fragmentation. Arctigenin-treated cells showed caspase-3/7 activation and increased apoptosis versus control cells. FasL, a death ligand associated with extrinsic apoptotic signaling pathways, was up-regulated by Arctigenin treatment. Moreover, caspase-8, a part of the extrinsic apoptotic pathway, was activated by Arctigenin treatments. Expressions of anti-apoptotic factors such as Bcl-2 and Bcl-xL, components of the mitochondria-dependent intrinsic apoptosis pathway, significantly decreased following Arctigenin treatment. The expressions of pro-apoptotic factors such as BAX, BAD and caspase-9, and tumor suppressor -53 increased by Arctigenin treatments. In addition, Arctigenin activated caspase-3 and poly (ADP-ribose) polymerase (PARP) induced cell death. Arctigenin also inhibited the proliferation of FaDu cells by the suppression of p38, NF-κB, and Akt signaling pathways. These results suggest that Arctigenin may inhibit cell proliferation and induce apoptotic cell death in FaDu human pharyngeal carcinoma cells through both the mitochondria-mediated intrinsic pathway and the death receptor-mediated extrinsic pathway.

    Show More  
  • Original Article 2022-11-01

    Involvement of adaptor protein, phosphotyrosine interacting with PH domain and leucine zipper 1 in diallyl trisulfide-induced cytotoxicity in hepatocellular carcinoma cells

    Feng Guan, Youming Ding, Yikang He et al.

    Abstract : It has been demonstrated that APPL1 (adaptor protein, phosphotyrosine interacting with PH domain and leucine zipper 1) is involved in the regulation of several growth-related signaling pathways and thus closely associated with the development and progression of some cancers. Diallyl trisulfide (DAT), a garlic-derived bioactive compound, exerts selective cytotoxicity to various human cancer cells through interfering with pro-survival signaling pathways. However, whether and how DAT affects survival of human hepatocellular carcinoma (HCC) cells remain unclear. Herein, we tested the hypothesis of the involvement of APPL1 in DAT-induced cytotoxicity in HCC HepG2 cells. We found that Lys 63 (K63)-linked polyubiquitination of APPL1 was significantly decreased whereas phosphorylation of APPL1 at serine residues remained unchanged in DAT-treated HepG2 cells. Compared with wild-type APPL1, overexpression of APPL1 K63R mutant dramatically increased cell apoptosis and mitigated cell survival, along with a reduction of phosphorylation of STAT3, Akt, and Erk1/2. In addition, DAT administration markedly reduced protein levels of intracellular TNF receptor-associated factor 6 (TRAF6). Genetic inhibition of TRAF6 decreased K63-linked polyubiquitination of APPL1. Moreover, the cytotoxicity impacts of DAT on HepG2 cells were greatly attenuated by overexpression of wild-type APPL1. Taken together, these results suggest that APPL1 polyubiquitination probably mediates the inhibitory effects of DAT on survival of HepG2 cells by modulating STAT3, Akt, and Erk1/2 pathways.

    Show More  
  • Original Article 2022-11-01

    The WNT/Ca2+ pathway promotes atrial natriuretic peptide secretion by activating protein kinase C/transforming growth factor-β activated kinase 1/activating transcription factor 2 signaling in isolated beating rat atria

    Zhi-yu Li, Ying Liu, Zhuo-na Han et al.

    Abstract : WNT signaling plays an important role in cardiac development, but abnormal activity is often associated with cardiac hypertrophy, myocardial infarction, remodeling, and heart failure. The effect of WNT signaling on regulation of atrial natriuretic peptide (ANP) secretion is unclear. Therefore, the purpose of this study was to investigate the effect of Wnt agonist 1 (Wnta1) on ANP secretion and mechanical dynamics in beating rat atria. Wnta1 treatment significantly increased atrial ANP secretion and pulse pressure; these effects were blocked by U73122, an antagonist of phospholipase C. U73122 also abolished the effects of Wnta1-mediated upregulation of protein kinase C (PKC) β and γ expression, and the PKC antagonist Go 6983 eliminated Wnta1-induced secretion of ANP. In addition, Wnta1 upregulated levels of phospho-transforming growth factor-β activated kinase 1 (p-TAK1), TAK1 banding 1 (TAB1) and phospho-activating transcription factor 2 (p-ATF2); these effects were blocked by both U73122 and Go 6983. Wnta1-induced ATF2 was abrogated by inhibition of TAK1. Furthermore, Wnta1 upregulated the expression of T cell factor (TCF) 3, TCF4, and lymphoid enhancer factor 1 (LEF1), and these effects were blocked by U73122 and Go 6983. Tak1 inhibition abolished the Wnta1-induced expression of TCF3, TCF4, and LEF1 and Wnta1-mediated ANP secretion and changes in mechanical dynamics. These results suggest that Wnta1 increased the secretion of ANP and mechanical dynamics in beating rat atria by activation of PKC–TAK1–ATF2–TCF3/LEF1 and TCF4/LEF1 signaling mainly via the WNT/Ca2+ pathway. It is also suggested that WNT–ANP signaling is implicated in cardiac physiology and pathophysiology.

    Show More  
  • Original Article 2022-11-01

    Cell-cell contacts via N-cadherin induce a regulatory renin secretory phenotype in As4.1 cells

    Jai Won Chang, Soohyun Kim, Eun Young Lee et al.

    Abstract : The lack of a clonal renin-secreting cell line has greatly hindered the investigation of the regulatory mechanisms of renin secretion at the cellular, biochemical, and molecular levels. In the present study, we investigated whether it was possible to induce phenotypic switching of the renin-expressing clonal cell line As4.1 from constitutive inactive renin secretion to regulated active renin secretion. When grown to postconfluence for at least two days in media containing fetal bovine serum or insulin-like growth factor-1, the formation of cell-cell contacts via N-cadherin triggered downstream cellular signaling cascades and activated smooth muscle-specific genes, culminating in phenotypic switching to a regulated active renin secretion phenotype, including responding to the key stimuli of active renin secretion. With the use of phenotype-switched As4.1 cells, we provide the first evidence that active renin secretion via exocytosis is regulated by phosphorylation/dephosphorylation of the 20 kDa myosin light chain. The molecular mechanism of phenotypic switching in As4.1 cells described here could serve as a working model for full phenotypic modulation of other secretory cell lines with incomplete phenotypes.

    Show More  
  • Original Article 2022-11-01

    Thermotherapy as an alternative to exercise for metabolic health in obese postmenopausal women: focus on circulating irisin level

    Seung-Jea Lee, Tae-Wook Kim, Tae-Hwan Park et al.

    Abstract : Irisin is a myokine caused by exercise that improves insulin resistance and weight loss. However, under unfavorable conditions such as air pollution, and during the pandemic, outdoor activities are uncomfortable. Therefore, in this study, the effect of heat therapy (half bath 42 ± 0.5°C for 30 min) on irisin circulation levels as an exercise alternative for middle-aged obese women after menopause was investigated. Subjects were 33 women aged 49.54 ± 6.04 years, with parameters of height, 160.12 ± 4.33 cm, weight, 69.71 ± 7.52 kg, body surface area 1.73 ± 0.13 m2, body mass index, 27.19 ± 3.40 kg/m2. The results suggest that circulating irisin levels showed a significant increase after one-time thermotherapy (TH-1). However, the increase in circulating irisin levels after 15 treatments (TH-15, 5 days/week, 3 weeks) was significantly varied. The level of adiponectin, which increases fatty oxidation to reduce fatty deposition, increased significantly at TH-1, but further increased at TH-15, which was significantly different from the level of TH-1. In addition, the basic serum free fatty acid (FFA) level was significantly increased at TH-15 compared to TH-1. Significant differences were also found in the lipid profile (body mass index, waist circumference, and % body fat). Thermotherapy can significantly increase the tympanic temperature and induce changes in circulating irisin and adiponectin levels. Thus, it resulted in positive changes in FFA and lipid profiles. Therefore, repeated thermotherapy is effective in increasing circulating irisin levels in postmenopausal obese women.

    Show More  
  • Original Article 2022-11-01

    Neogambogic acid relieves myocardial injury induced by sepsis via p38 MAPK/NF-κB pathway

    Wei Fu, Xiaowei Fang, Lidong Wu et al.

    Abstract : Sepsis-associated myocardial injury, an invertible myocardial depression, is a common complication of sepsis. Neogambogic acid is an active compound in garcinia and exerts anthelmintic, anti-inflammatory, and detoxification properties. The role of neogambogic acid in sepsis-associated myocardial injury was assessed. Firstly, mice were pretreated with neogambogic acid and then subjected to lipopolysaccharide treatment to induce sepsis. Results showed that lipopolysaccharide treatment induced up-regulation of biomarkers involved in cardiac injury, including lactate dehydrogenase (LDH), creatine kinase-MB (CK-MB), and troponin I (cTnI). However, pretreatment with neogambogic acid reduced levels of LDH, CK-MB, and cTnI, and ameliorated histopathological changes in the heart tissues of septic mice. Secondly, neogambogic acid also improved cardiac function in septic mice through reduction in left ventricular end-diastolic pressure, and enhancement of ejection fraction, fractional shortening, and left ventricular systolic mean pressure. Moreover, neogambogic acid suppressed cardiac apoptosis and inflammation in septic mice and reduced cardiac fibrosis. Lastly, protein expression of p-p38, p-JNK, and p-NF-κB in septic mice was decreased by neogambogic acid. In conclusion, neogambogic acid exerted anti-apoptotic, anti-fibrotic, and anti-inflammatory effects in septic mice through the inactivation of MAPK/NF-κB pathway.

    Show More  
  • Original Article 2022-11-01

    Lactate promotes vascular smooth muscle cell switch to a synthetic phenotype by inhibiting miR-23b expression

    Yanchao Hu, Chunyan Zhang, Yajie Fan et al.

    Abstract : Recent research indicates that lactate promotes the switching of vascular smooth muscle cells (VSMCs) to a synthetic phenotype, which has been implicated in various vascular diseases. This study aimed to investigate the effects of lactate on the VSMC phenotype switch and the underlying mechanism. The CCK-8 method was used to assess cell viability. The microRNAs and mRNAs levels were evaluated using quantitative PCR. Targets of microRNA were predicted using online tools and confirmed using a luciferase reporter assay. We found that lactate promoted the switch of VSMCs to a synthetic phenotype, as evidenced by an increase in VSMC proliferation, mitochondrial activity, migration, and synthesis but a decrease in VSMC apoptosis. Lactate inhibited miR-23b expression in VSMCs, and miR-23b inhibited VSMC's switch to the synthetic phenotype. Lactate modulated the VSMC phenotype through downregulation of miR-23b expression, suggesting that overexpression of miR-23b using a miR-23b mimic attenuated the effects of lactate on VSMC phenotype modulation. Moreover, we discovered that SMAD family member 3 (SMAD3) was the target of miR-23b in regulating VSMC phenotype. Further findings suggested that lactate promotes VSMC switch to synthetic phenotype by targeting SMAD3 and downregulating miR-23b. These findings suggest that correcting the dysregulation of miR-23b/SMAD3 or lactate metabolism is a potential treatment for vascular diseases.

    Show More  
  • Original Article 2022-11-01

    Group 1 metabotropic glutamate receptor 5 is involved in synaptically-induced Ca2+-spikes and cell death in cultured rat hippocampal neurons

    Ji Seon Yang, Sujeong Jeon, Hyun-Jong Jang et al.

    Abstract : Group 1 metabotropic glutamate receptors (mGluRs) can positively affect postsynaptic neuronal excitability and epileptogenesis. The objective of the present study was to determine whether group 1 mGluRs might be involved in synaptically-induced intracellular free Ca2+ concentration ([Ca2+]i) spikes and neuronal cell death induced by 0.1 mM Mg2+ and 10 µM glycine in cultured rat hippocampal neurons from embryonic day 17 fetal Sprague–Dawley rats using imaging methods for Ca2+ and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays for cell survival. Reduction of extracellular Mg2+ concentration ([Mg2+]o) to 0.1 mM induced repetitive [Ca2+]i spikes within 30 sec at day 11.5. The mGluR5 antagonist 6-Methyl-2-(phenylethynyl) pyridine (MPEP) almost completely inhibited the [Ca2+]i spikes, but the mGluR1 antagonist LY367385 did not. The group 1 mGluRs agonist, 3,5-dihydroxyphenylglycine (DHPG), significantly increased the [Ca2+]i spikes. The phospholipase C inhibitor U73122 significantly inhibited the [Ca2+]i spikes in the absence or presence of DHPG. The IP3 receptor antagonist 2-aminoethoxydiphenyl borate or the ryanodine receptor antagonist 8-(diethylamino)octyl 3,4,5-trimethoxybenzoate also significantly inhibited the [Ca2+]i spikes in the absence or presence of DHPG. The TRPC channel inhibitors SKF96365 and flufenamic acid significantly inhibited the [Ca2+]i spikes in the absence or presence of DHPG. The mGluR5 antagonist MPEP significantly increased the neuronal cell survival, but mGluR1 antagonist LY367385 did not. These results suggest a possibility that mGluR5 is involved in synaptically-induced [Ca2+]i spikes and neuronal cell death in cultured rat hippocampal neurons by releasing Ca2+ from IP3 and ryanodine-sensitive intracellular stores and activating TRPC channels.

    Show More  

All Newest Articles

Current Issue

November, 2022
Vol.26 No.6

Current Issue
All Issues

Journal Impact Factor (2021) 1.718

Most Read

Close ✕