Korean J Physiol Pharmacol 2022; 26(5): 377-387
Published online September 1, 2022 https://doi.org/10.4196/kjpp.2022.26.5.377
Copyright © Korean J Physiol Pharmacol.
Deokbae Park1,#, Jung-Hee Lee2,#, and Sang-Pil Yoon3,*
1Department of Histology, College of Medicine, Jeju National University, Jeju 63243, 2Department of Cellular and Molecular Medicine, Chosun University School of Medicine, Gwangju 61452, 3Department of Anatomy, College of Medicine, Jeju National University, Jeju 63243, Korea
Correspondence to:Sang-Pil Yoon
E-mail: spyoon@jejunu.ac.kr
Author contributions: D.P. and S.P.Y. conceived and designed the present study; D.P. and J.H.L. performed the experiments for data acquisition and analysis; D.P. and J.H.L. interpreted the experimental results; D.P. and J.H.L. wrote the original manuscript; S.P.Y. revised the manuscript.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Benzimidazole anthelmintic agents have been recently repurposed to overcome cancers resistant to conventional therapies. To evaluate the anti-cancer effects of benzimidazole on resistant cells, various cell death pathways were investigated in 5-fluorouracil-resistant colorectal cancer cells. The viability of wild-type and 5-fluorouracil-resistant SNU-C5 colorectal cancer cells was assayed, followed by Western blotting. Flow cytometry assays for cell death and cell cycle was also performed to analyze the anti-cancer effects of benzimidazole. When compared with albendazole, fenbendazole showed higher susceptibility to 5-fluorouracil-resistant SNU-C5 cells and was used in subsequent experiments. Flow cytometry revealed that fenbendazole significantly induces apoptosis as well as cell cycle arrest at G2/M phase on both cells. When compared with wild-type SNU-C5 cells, 5-fluorouracil-resistant SNU-C5 cells showed reduced autophagy, increased ferroptosis and ferroptosis-augmented apoptosis, and less activation of caspase-8 and p53. These results suggest that fenbendazole may be a potential alternative treatment in 5-fluorouracil-resistant cancer cells, and the anticancer activity of fenbendazole does not require p53 in 5-fluorouracil-resistant SNU-C5 cells.
Keywords: Apoptosis, Colorectal cancer, Drug resistance, Fenbendazole, p53
Drug repositioning of approved therapies might extend their therapeutic potential against resistant cancer cells [1]. Benzimidazole anthelmintic agents are relatively non-toxic to normal cells [2-6] with a half-maximal inhibitory concentration (IC50) of 5 µM for less sensitivity in 461 cancer cells [7]. A recent report summarized the anti-tumourigenic activity of benzimidazole as follows [1]: 1) cell cycle arrest at G2/M phase with increased levels of cyclin B1, p21 and p27Kip1; 2) apoptosis with increased expression of caspase-3, poly (ADP-ribose) polymerase (PARP), and cytochrome-C; 3) autophagy with increased microtubule-associated protein 1A/1B-light chain 3 (LC3) and Beclin-1; and 4) altered cell viability or differentiation with increased p53, p21, p38, and c-Jun N-terminal kinase (JNK), and decreased extracellular signal-regulated protein kinase (ERK).
Self-administration of fenbendazole, a benzimidazole anthelmintic agent, by patients with cancer has been reported in social media [8,9]. Although anti-cancer effects of fenbendazole as an alternative or supplementary agent were recently reported in a case series of genitourinary malignancies [10], no definitive evidence of anti-cancer effects exists in human because of its toxicity and teratogenicity [8]. Nevertheless, the potential for drug repositioning of fenbendazole requires further investigation because of the much higher IC50 values in normal cells compared with cancer cells [5].
Colorectal cancer (CRC) is the third most common cancer diagnosed and the second leading cause of cancer death worldwide [11]. Although 5-fluorouracil (5-FU) remains the mainstay of standard chemotherapy for CRC, various resistance mechanisms are reported [12]. Especially, mutations in p53 [13-15] or p38α mitogen-activated protein kinase (MAPK) [16,17] are associated with chemo-resistant CRC. To overcome the resistance, activation of transforming growth factor-β [18] or ERK [19] was suggested in 5-FU-resistant CRC cell line. Upregulation of protein kinase B (Akt) is a critical factor in the progression of CRC [13]. It induces apoptosis
In terms of benzimidazole, Nygre
Although fenbendazole enhance the cytotoxicity of radiation or docetaxel and increased the anti-cancer effects of radiation against mammary tumors [27], only a few studies evaluated at the anti-cancer effects of benzimidazole against metastatic or resistant cancers [28-30]. Albendazole effectively inhibited paclitaxel- and doxorubicin-resistant lung cancer cells [31] and thereby reduced multidrug resistance. Nonetheless, the role of benzimidazole in resistant CRC has yet to be reported. Therefore, we aimed to evaluate the effects and underlying mechanisms of fenbendazole in SNU-C5/5-FUR cells as compared with wild type SNU-C5 cells in order to identify therapeutic strategies to overcome resistance to 5-FU.
MTT was purchased from Amresco, Inc. (VWR International LLC, Seongnam, Korea). 5-fluorouracil (5-FU, #F6627), albendazole (#PHR 1281), deferoxamine mesylate (DFOM, #D9533), fenbendazole (#PHR 1832), and ferrostatin-1 (#SML 0583) were obtained from Sigma-Aldrich (Merck KGaA, Darmstadt, Germany).
Antibodies specific for c-Myc (9E10; #sc-40; diluted 1:1,000), cytochrome-C (H-104; #sc-7159; diluted 1:1,000), ERK (C-16; #sc-93; diluted 1:2,000), ferritin heavy chain (B-12) (FTH1; #sc-376594; diluted 1:2,000), GAPDH (#sc-47724; diluted 1:2,000), and phospho-p53 (Ser6; #sc135630; diluted 1:1,000), transferrin receptor (H68.4) (TfRC; #sc-65882; diluted 1:2,000) were purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA); glutathione peroxidase 4 (GPX4 [EPNCIR144]; #ab125066; diluted 1:1,000) and SLC40A1 (ferroportin, FPN; #ab78066; diluted 1:1,000) were purchased from Abcam (Cambridge, UK); caspase-3 (#9665; diluted 1:1,000), cleaved caspase-3 (#9661; diluted 1:1,000), cyclin B1 (#4138; diluted 1:1,000), phospho-ERK (Thr202/Tyr204; #4370; diluted 1:2,000), JNK (#9252; diluted 1:1,000), phosphor-JNK (Thr183/Tyr185) (#9251; diluted 1:1,000), p21 (#2947; diluted 1:1,000), p27 (#2552; diluted 1:1,000), p38 MAPK (#9212; diluted 1:1,000), phospho-p38 MAPK (Thr180/Tyr182; #9211; diluted 1:1,000), PARP (#9542; diluted 1:1,000), autophagy antibody sampler kit (#4445; consisting of Beclin-1 (D40C5), LC3 (D3U4C), Atg5 (D5F5U), Atg12 (D88H11), Atg16L1 (D6D5), Atg7 (D12B11), and Atg3; diluted 1:2,000/each), and necroptosis antibody sampler kit (#98110; consisting of receptor-interacting protein kinase (RIP) (D94C12), phospho-RIP (Ser166) (D1L3S), mixed lineage kinase domain-like protein (MLKL) (D2I6N), phospho-MLKL (Ser358) (D6H3V), receptor-interacting protein kinase 3 (RIP3) (E1Z1d), and phospho-RIP3 (S227) (D6W2T); diluted 1:1,000/each) were purchased from Cell Signaling Technology Inc. (Beverly, MA, USA); the high mobility group box 1 (HMGB1; #GTX62170; diluted 1:2,000) and p53 (#GTX70218; diluted 1:1,000) were purchased from GeneTex (Irvine, CA, USA); SLC7A11 (cysteine/glutamate transporter ; #ANT-111; diluted 1:2,000) was purchased from Alomone Labs (Jerusalem, Israel).
SNU-C5 (IC50 against 5-FU = 5 μM) and the 5-fluorouracil-resistant SNU-C5 (SNU-C5/5-FUR; IC50 against 5-FU = 140 μM) cell lines were cultured as previously described [19,32].
To achieve similar confluency after 3 days of incubation, SNU-C5 (2 × 103 cells/well) and SNU-C5/5-FUR (5 × 103 cells/well) cells were seeded in 96-well plates. Cells were treated with benzimidazole (fenbendazole and albendazole) and anti-ferroptotic agents (ferrostatin-1 and DFOM) at various concentrations. The effect of drugs on cell viability was evaluated
Cells were treated with or without fenbendazole (0.5 and 5.0 μM for SNU-C5 and SNU-C5/5-FUR cells, respectively) for 3 days, followed by flow cytometry using the FACSCalibur system (BD Biosciences, San Jose, CA, USA) and BD FACStation software version 6.0 (BD Biosciences) as described previously [19,32].
The harvest, the protein quantification, and electrophoresis of the protein in cell lysates were performed as previously described [19,32]. The protein bands were captured and quantified using AzureSpot analysis software (version 14.2; Azure c300; Azure Biosystems, Inc., Dublin, CA, USA).
All data were compiled from a minimum of three replicate experiments. The data are expressed as mean values ± SD. Statistically significant differences (p < 0.05) were found using Student’s paired t-test or one-way analysis of variance (ANOVA) with a Bonferroni
Fenbendazole and albendazole showed dose-dependent anti-proliferative effects against both SNU-C5 and SNU-C5/5-FUR cells (Fig. 1A, C). After 3 days of incubation, the IC50 values of the SNU-C5 cells treated with fenbendazole and albendazole were 0.50 and 0.47 μM, respectively. The IC50 values of SNU-C5/5-FUR cells treated with fenbendazole and albendazole were 4.09 and 4.23 μM, respectively. Cell viability of SNU-C5 cells was s 42.24 ± 2.71% and 38.18 ± 2.01% when incubated with 1 μM of fenbendazole and albendazole, respectively. Cell viability of SNU-C5/5-FUR cells was 65.66 ± 1.83% and 67.57 ± 1.58% when treated with 1 μM of fenbendazole and albendazole, respectively, which was further decreased to 30.79 ± 2.35% and 39.78 ± 1.40% at 10 μM concentrations.
Fenbendazole was more effective than albendazole against SNU-C5/5-FUR cells, and time-dependent anti-cancer effects of fenbendazole were further evaluated (Fig. 1B, C). Fenbendazole showed time-dependent anti-proliferative effects on both CRC cells. During 3 days of incubation, the proliferation of SNU-C5 cells increased 4.07 ± 0.18-fold with vehicle and 1.63 ± 0.11-fold with 1 μM of fenbendazole when compared with vehicle-treated control. During 3 days of incubation, SNU-C5/5-FUR cells proliferated 4.60 ± 0.41-fold with vehicle, and 2.94 ± 0.25 and 1.44 ± 0.15-fold with 1 μM and 10 μM of fenbendazole, respectively, when compared with vehicle-treated control. Taken together, a dose of close to the IC50 values of fenbendazole, 0.5 μM for SNU-C5 cells and 5 μM for SNU-C5/5-FUR cells, was used in subsequent experiments.
Cell cycle analysis resulted in a significant increase in the fraction of G2/M phase (Fig. 2A). The fraction of SNU-C5 (12.50 ± 0.92%
Western blot revealed that p27 showed a significant increase in the number of SNU-C5 (2.82 ± 0.04-fold) and SNU-C5/5-FUR (2.43 ± 0.17-fold) cells. P21 expression was significantly increased in SNU-C5 (1.98 ± 0.07-fold) and SNU-C5/5-FUR (1.68 ± 0.13-fold) cells. Levels of c-Myc decreased considerably in SNU-C5 (0.59 ± 0.07-fold) and SNU-C5/5-FUR (0.72 ± 0.01-fold) cells, while cyclin B1 levels did not change considerably (Fig. 2B).
The cell death effects were identified
Western blot revealed that the activation (cleaved/full length) of PARP was significantly increased in SNU-C5 (1.79 ± 0.11-fold) and SNU-C5/5-FUR (2.28 ± 0.03-fold) cells. The activation (cleaved/total form) of caspase-3 was significantly increased in SNU-C5 (1.44 ± 0.10-fold) and SNU-C5/5-FUR (2.18 ± 0.09-fold) cells. The level of cytochrome-C showed a significant increase in SNU-C5 (1.37 ± 0.17-fold) and SNU-C5/5-FUR (1.37 ± 0.08-fold) cells (Fig. 3B).
Western blot on autophagy proteins revealed that Beclin-1 expression was significantly increased in SNU-C5 (1.35 ± 0.02-fold) and SNU-C5/5-FUR (1.46 ± 0.07-fold) cells. LC3-I level increased slightly in SNU-C5 (1.13 ± 0.13-fold) cells but remained unchanged in SNU-C5/5-FUR cells. Atg7 expression increased considerably in SNU-C5 (1.53 ± 0.07-fold) and in SNU-C5/5-FUR (1.12 ± 0.06-fold) cells. Atg16L1 levels increased slightly in SNU-C5/5-FUR (1.21 ± 0.04-fold) but remained unchanged in SNU-C5 cells. Other markers were not changed considerably in both CRC cells (Fig. 4).
Western blot on ferroptosis proteins revealed that GPX4 showed significantly decreased levels in SNU-C5 (0.60 ± 0.02-fold) and SNU-C5/5-FUR (0.71 ± 0.05-fold) cells. FTH1 levels increased significantly in SNU-C5 (5.44 ± 0.32-fold) and SNU-C5/5-FUR (3.48 ± 0.54-fold) cells. FPN showed a significant increase in SNU-C5 (1.77 ± 0.07-fold) and SNU-C5/5-FUR (1.59 ± 0.10-fold) cells. The levels of SLC7A11 increased slightly in SNU-C5 (1.19 ± 0.05-fold) cells but decreased significantly in SNU-C5/5-FUR (0.67 ± 0.02-fold) cells. The expression of transferrin receptor remained unchanged in both CRC cells. HMGB1, a member of damage-associated molecular patterns (DAMP), showed significantly increased levels in SNU-C5 (1.30 ± 0.10-fold) and SNU-C5/5-FUR (2.36 ± 0.06-fold) cells (Fig. 5A).
The effects of anti-ferroptotic agents, ferrostatin-1 and DFOM, were evaluated in fenbendazole-induced ferroptosis (Fig. 5B). Ferrostatin-1 co-treatment did not increase the viability of both CRC cells. Concentrations greater than 1 μM paradoxically decreased the cell viability in SNU-C5 (69.60 ± 4.85%
Western blot on necroptotic proteins revealed that the activation (phosphor/total) of RIP was significantly increased in SNU-C5 (2.31 ± 0.21-fold) and SNU-C5/5-FUR (4.72 ± 0.32-fold) cells. The activation of RIP3 was significantly decreased in SNU-C5 (0.42 ± 0.00-fold) and SNU-C5/5-FUR (0.47 ± 0.04-fold) cells. The activation of MLKL was not changed considerably in both CRC cells (Fig. 6). While the full length of caspase-8 was not changed in both CRC cells, the significant increase was observed in the active cleaved fragment in SNU-C5 (2.45 ± 0.21-fold) cells and the cleaved intermediate fragment in SNU-C5/5-FUR (1.22 ± 0.07-fold) cells (Fig. 6).
The activation (phosphor/total form) of p53 was significantly increased in SNU-C5 (1.17 ± 0.05-fold) cells, but the activation of p38, ERK, and JNK did not change. The activation of p53, p38 (0.83 ± 0.02-fold), ERK, and JNK showed no significant changes in SNU-C5/5-FUR cells (Fig. 7).
As reported previously [1,30], we found that fenbendazole arrests cell cycle at G2/M phase and induces apoptosis
Benzimidazole-induced ferroptosis has yet to be fully reported. Ferroptosis is characterized by lipid peroxidation. It can be induced by the accumulation of free iron and
Benzimidazole-related necroptosis has yet to be investigated comprehensively. Necroptosis is negatively regulated by caspases and initiated by a complex containing of RIP and RIP3 kinases, leading to phosphorylation of MLKL [40-42]. In this study, MLKL activation was not affected by fenbendazole treatment, and thus necroptosis was not effectively activated in both CRC cells. But active and intermediate form of caspase-8 was increased in SNU-C5 and SNU-C5/5-FUR cells, respectively, which induces apoptosis
During MAPK signaling, benzimidazole usually inhibits ERK activation [7,44], but increases p38 [5,35] and JNK activation [5,23,33,35,45]. Interestingly, ERK-dependent activation of heat shock factor-1 (HSF-1) promotes chemotherapeutic resistance to benzimidazole (parbendazole and nocodazole) in HCT116 and RKO cells. Biochemical inhibition of HSF-1 results in significant enhancement of drug potency. Therefore, Wales
Benzimidazole is known to activate p53 and p21 but decrease mutant p53 expression [30,46]. Cancer cells with wild-type p53 showed higher sensitivity to fenbendazole compared with p53 mutant cells [5,35]. In addition to cell cycle arrest
Taken together, SNU-C5/5-FUR cells exhibited approximately 10-fold higher IC50 values with fenbendazole compared with SNU-C5 cells, but still showed cytotoxicity at micromolar concentrations as previously reported [35]. Fenbendazole induces apoptosis as well as cell cycle arrest at G2/M phase
None.
This work was supported by a research grant from the Jeju National University Hospital Research Fund of Jeju National University School of Medicine in 2020.
The authors declare no conflicts of interest.
View Full Text | Article as PDF |
Abstract | Figure & Table |
Pubmed | PMC |
Print this Page | Export to Citation |
ⓒ 2019. The Korean Journal of Physiology & Pharmacology. Powered by INFOrang Co., Ltd