Korean J Physiol Pharmacol 2021; 25(5): 467-478
Published online September 1, 2021 https://doi.org/10.4196/kjpp.2021.25.5.467
Copyright © Korean J Physiol Pharmacol.
Yoonhee Bae1,2, Jell Lee3, Changwon Kho2, Joon Sig Choi3, and Jin Han1,*
1Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutics Center, Inje University, Busan 47392, 2Division of Applied Medicine, Research Institute for Korea Medicine, School of Korean Medicine, Pusan National University, Busan 50612, 3Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Korea
Correspondence to:Jin Han
E-mail: phyhanj@inje.ac.kr
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Copyright © Korean J Physiol Pharmacol, pISSN 1226-4512, eISSN 2093-3827
In this study, we aimed to synthesize PAMAMG3 derivatives (PAMAMG3-KRRR and PAMAMG3-HKRRR), using KRRR peptides as a nuclear localization signal and introduced histidine residues into the KRRR-grafted PAMAMG3 for delivering a therapeutic, carcinoma cell-selective apoptosis gene, apoptin into human primary glioma (GBL-14) cells and human dermal fibroblasts. We examined their cytotoxicity and gene expression using luciferase activity and enhanced green fluorescent protein PAMAMG3 derivatives in both cell lines. We treated cells with PAMAMG3 derivative/apoptin complexes and investigated their intracellular distribution using confocal microscopy. The PAMAMG3-KRRR and PAMAMG3-HKRRR dendrimers were found to escape from endolysosomes into the cytosol. The JC-1 assay, glutathione levels, and Annexin V staining results showed that apoptin triggered cell death in GBL-14 cells. Overall, these findings indicated that the PAMAMG3-HKRRR/apoptin complex is a potential candidate for an effective nonviral gene delivery system for brain tumor therapy in vitro.
Keywords: Cell death, Dendrimers, Gene delivery system, Glioma
Glioblastoma multiforme (GBM) is an aggressive primary brain tumor classified as a grade 4 astrocytic glioma based on its histological and molecular features. GBM displays high genetic heterogeneity, with invasive growth, long-distance migration, and angiogenesis [1,2]. It is usually resistant to therapies or treatments such as surgery, radiotherapy, and chemotherapy owing to tumor recurrence
Polyamidoamine (PAMAM) dendrimers are macromolecular cationic polymers with a flexible structure and globular shape depending on dendrimer generation. In particular, PAMAM has been widely studied as a well-known cationic dendrimer for gene/drug delivery, gene therapy, and medical imaging owing to its tunable size, negligible cytotoxicity, water solubility, and non-immunogenicity that characterize the suitability of vehicles for gene or drug delivery [14,15]. Positively charged amino groups on PAMAM condense the phosphate backbone of DNA
Apoptin is a small protein comprising 121 amino acids including nuclear localization and nuclear export signal peptides. The cancer-specific toxicity of apoptin becomes functional with its subcellular localization. In various cancer cells, apoptin enters the nucleus; however, in non-transformed cells, it is located mainly in the cytoplasm [22,23]. Apoptin-mediated apoptosis is mitochondria-regulated pathway that is independent of death receptors. Tumor-specific phosphorylation of apoptin at Thr 108
Here, we aimed to develop PAMAMG3 derivatives (PAMAMG3-KRRR and PAMAMG3-HKRRR) as more efficient apoptin gene delivery carriers with a nonviral gene delivery system for therapeutic applications. We assessed the
PAMAMG3-KRRR was synthesized using the HOBt/HBTU coupling reaction. First, lyophilized PAMAMG3 (10 mg) was dissolved in 2.5 ml of anhydrous DMF solution (80:20, DMF/DMSO, v/v) and four equivalents of HOBt, HBTU, and Fmoc-His(trt)-OH, and eight equivalents of DIPEA were added. The synthesis reaction was performed at 25°C for 18 h. Then, Fmoc-Lys (Boc)-grafted PAMAMG3 was settled in diethyl ether and centrifuged. Subsequently, the supernatant was removed and the precipitated Fmoc-Lys (Boc)-grafted PAMAMG3 was washed with cold diethyl ether and centrifuged again. The wash step of Fmoc-Lys (Boc)-grafted PAMAMG3 was repeated thrice after which it was dried in nitrogen gas and the Fmoc deprotection reaction was performed in 30% piperidine solution (30:70, piperidine/DMF, v/v) at 25°C for 2 h in the dark. The deprotected Lys (Boc)-grafted PAMAMG3 was precipitated, washed, dried, and dissolved as described above. Four equivalents of HOBt, HBTU, and additional amino acids, and eight equivalents of DIPEA were added to the deprotected Lys (Boc)-grafted PAMAMG3 solution. Synthesis and Fmoc deprotection were performed as described above. The pbf and Boc protection groups of PAMAM derivatives were eliminated using 95% trifluoroacetic acid solution (95:2.5:2.5, trifluoroacetic acid/triisopropylsilane/H2O, v/v) at 25°C for 7 h. Deprotected PAMAMG3-KRRR was precipitated, washed, and dried as described above. The dried PAMAMG3-KRRR was dissolved in water, placed in a dialysis membrane, and dialyzed against distilled water for 18 h. Next, PAMAMG3-KRRR was lyophilized and obtained as a white powder. PAMAM G3-HKRRR was synthesized using the same method used for the synthesis of PAMAMG3-KRRR. The 1H NMR spectra of PAMAMG3-KRRR and PAMAMG3-HKRRR are shown in Fig. 1B.
The plasmids used in this study were provided by An
Complexes of pJDK or pJDK-apoptin with each polymer were prepared with various weight ratios in HEPES buffer. The PicoGreen assay was performed according to the manufacturer’s instructions as described previously [27].
GBL-14 cells and HDFs were seeded (1.3 × 104 cells/well) in a 96-well culture plate. Each polymer-treated cell was further treated with WST-1 reagent for 2 h at 37°C. Cell viability was determined using the EZ-Cytox assay kit (DoGen, Seoul, Korea).
Lactate dehydrogenase (LDH) levels were assessed using a LDH assay kit (DoGen). GBL-14 cells and HDFs were seeded (1.3 × 104 cells/well) in a 96-well culture plate and the LDH degree of each sample was analyzed according to the manufacturer’s instructions described previously [27].
GBL-14 cells and HDFs were cultured (5 × 103 cells/well) in 8-well culture plates (Ibidi, Seoul, Korea). Cells were incubated with the following complexes (Alexa Fluor 546-labeled pJDK or pJDK-apoptin and PAMAMG3, PAMAMG3-KRRR, or PAMAMG3-HKRRR) with a weight ratio of 4 and then incubated for 24 h. The cells were stained with DAPI for 5 min and images were obtained using a confocal microscope.
GBL-14 cells and HDFs were cultured (1.3 × 104 cells/well) in a 96-well culture plate. The complexes (pJDK-Luci [1 µg] and PAMAMG3, PAMAMG3-KRRR, or PAMAMG3-HKRRR) were prepared with various weight ratios in 20 µl of FBS-free DMEM medium and then incubated for 30 min at room temperature. The luciferase activity of each sample was analyzed according to the manufacturer’s instructions as described previously [27].
GBL-14 cells and HDFs were cultured (5 × 103 cells/well) in 8-well culture plates. Cells were incubated with pJDK or pJDK-apoptin (1 µg) and Alexa Fluor 488-labeled PAMAMG3, PAMAMG3-KRRR, or PAMAMG3-HKRRR with a weight ratio of 4 in FBS-free DMEM medium for 24 h at 37°C. The cells were treated with LysoTracker (Invitrogen) as acidic lysosomal compartments for 15 min at 37°C. The cell nuclei were counterstained with DAPI for 5 min at 37°C. Finally, images were obtained using a confocal microscope.
GBL-14 cells and HDFs were seeded (1.5 × 105 cells/well) in 6-well culture plates. Cells were treated with complexes formed under conditions similar to those used in intracellular trafficking experiments and stained with 2 µM JC-1 DMEM medium for 15 min at 37°C. The fluorescence intensity of each sample was quantitatively measured by flow cytometry.
GSH content was determined using a glutathione colorimetric assay (Thermo Fisher Scientific, Waltham, MA, USA). GBL-14 cells and HDFs were cultured (1.8 × 105 cells/well) in 6-well culture plates. The cells were exposed to the complexes for 24 h. GSH levels in each sample were analyzed according to the manufacturer’s instructions as described previously [27].
GBL-14 cells and HDFs were seeded (1.8 × 105 cells/well) in 6-well culture plates. Complex formation was carried out under conditions similar to those described for the intracellular trafficking experiments. Apoptotic events were analyzed
The complexes were prepared with a weight ratio of 4 in HEPES buffer and incubated for 30 min at 25°C. The hydrodynamic particle size and ξ-potential of the samples were measured using an ELS-Z analyzer (Otsuka Electronics Korea, Seoul, Korea) and Zetasizer Nano ZS system (Malvern Panalytical, Seoul, Korea).
All results are shown as mean ± standard deviation and were analyzed using unpaired Student’s t-test. Statistical analyses were performed using GraphPad Prism 8 (GraphPad Software Inc., La Jolla, CA, USA).
In the present study, we explored a safe and effective gene therapy method that delivered a tumor-specific gene, in human primary GBL-14 cells using nonviral vector delivery systems, PAMAMG3-KRRR and PAMAMG3-HKRRR. The synthesis of PAMAMG3-KRRR and PAMAMG3-HKRRR (Fig. 1A) was confirmed by 1H NMR spectroscopy (Fig. 1B). The PAMAMG3-HKRRR/pJDK-apoptin complex was released
Complexation of cationic PAMAM dendrimers with pDNA
Cytotoxicity of PAMAMG3, PAMAMG3-KRRR, PAMAMG3-HKRRR, and PEI25KD was investigated using the WST-1 assay. GBL-14 cells and HDFs were treated with different doses of the polymers for 24 and 48 h. PEI25KD showed strong cytotoxicity while PAMAMG3 showed negligible cytotoxicity in both cell types (Fig. 3A–D). Both cell lines treated with PAMAMG3-KRRR showed high cytotoxicity at 100 µg/ml as the polymer exposure time increased. However, the viability of PAMAMG3-KRRR-treated cells was influenced by both the dose and exposure time. PAMAMG3-HKRRR showed slightly increased toxicity than PAMAMG3-KRRRR when the dose and exposure time increased in both cells. To confirm this metabolic activity, a LDH assay was performed [29]. After 24 and 48 h, PAMAMG3-HKRRR showed lower toxicity in GBL-14 cells and HDFs than PAMAMG3-KRRR when both the dose and exposure time of the polymer were increased (Fig. 3E–H). These results suggest that PAMAMG3-HKRRR with increased gene expression may be a potential gene carrier in glioma cells.
PAMAM-KRRR had previously shown negligible cytotoxicity and enhanced transfection efficiency as a gene delivery carrier [20]. To examine the gene transfection efficiency of complexes with various weight ratios in both cells, we performed a luciferase assay that expressed the luciferase gene as a pCN-luci reporter gene. The transfection ability of PAMAMG3-KRRR and PAMAMG3-HKRRR was higher than that of PAMAMG3 at increasing polymer doses (Fig. 4A, C). Furthermore, cell cytotoxicity tests were performed for the complexes and the results were similar to those of the luciferase gene experiment. GBL-14 cells and HDFs treated with the polymers remained viable regardless of the polymer doses (Fig. 4B, D). To further investigate the gene expression ability of PAMAMG3-KRRR and PAMAMG3-HKRRR using GFP as a reporter gene, we evaluated the quantitative gene expression using FACS analysis. The expression of the PAMAMG3-KRRR/GFP or PAMAMG3-HKRRR/GFP complexes was higher than that of the PAMAMG3/GFP complex (Fig. 5A, B). Interestingly, PAMAMG3-HKRRR-treated GBL-14 cells showed higher gene expression than PAMAMG3-KRRR-treated cells. These results collectively indicate that PAMAMG3-HKRRR is relatively a more efficient gene carrier for glioma cells.
To evaluate the intracellular uptake ability of the complexes, GBL-14 cells and HDFs were incubated with Alexa Fluor 546-labeled pJDK or pJDK-apoptin and PAMAMG3, PAMAMG3-KRRR, and PAMAMG3-HKRRR. pJDK or pJDK-apoptin were observed as red spots in the cytosol and peri-nucleus of both cell types (Fig. 6A, B). Additionally, PAMAMG3-KRRR and PAMAMG3-HKRRR were observed as some red spots inside the nucleus of GBL-14 cells.
To explore intracellular localization after internalization of each complex, we used LysoTracker Red, a cationic fluorescent dye that stains lysosomal membranes under acidic pH conditions in living cells [30]. Each complex co-localized with LysoTracker (red) and PAMAMG3 and PAMAMG3-KRRR with or without histidine (green) in the cells (Fig. 6C, D). The PAMAMG3-HKRRR complex showed increased cytosolic concentrations after its release from the lysosome into the cytosolic compartment likely because of histidine of the imidazole group in PAMAMG3-HKRRR which provides a proton buffering effect. The results suggest that PAMAMG3-HKRRR shows considerably higher gene expression
To examine whether apoptin induced cell death
The GSH status was examined to validate whether reactive oxygen species generation by oxidative glutamate damage induces mitochondrial depolarization by apoptin, GSH, an intracellular thiol that plays an essential role in antioxidant activity and redox homeostasis against oxidative stress and cytotoxic agents is known to induce apoptosis [32]. Apoptin induced lower GSH levels in GBL-14 cells whereas PAMAMG3-KRRR or PAMAMG3-HKRRR-apoptin induced higher GSH levels in GBL-14 cells than PAMAMG3-apoptin (Fig. 7C, D). However cellular GSH levels did not change in the HDFs. These results suggest that cell death induced by PAMAMG3-KRRR with or without histidine and pJDK-apoptin occurs
Cell viability owing to pJDK or pJDK-apoptin with PAMAMG3, PAMAMG3-KRRR, and PAMAMG3-HKRRR was checked by performing an EZ-cytotoxicity assay using EZ-Cytox agent. The viability of GBL-14 cells treated with PAMAMG3-KRRR with or without histidine and pJDK-apoptin treatment was significantly reduced compared with that of PAMAMG3-KRRR with or without histidine and pJDK treatment (Fig. 8A, B). In contrast, each complex used in the assays showed little toxicity and no statistically significant difference between the polymer and polyplex-treated HDFs (Fig. 8C, D).
To further confirm whether PAMAMG3-HKRRR/pJDK-apoptin induced apoptosis, the FITC-Annexin V/PI apoptosis assay was performed. PAMAMG3-KRRR or PAMAMG3-HKRRR-apoptin-treated cells showed a late apoptotic stage (5.2% and 9.4%, respectively) compared with that in PAMAMG3-KRRR or PAMAMG3-HKRRR pJDK-treated cells (2.0% and 1.9%, respectively) (Fig. 9A, B). PAMAMG3-HKRRR/pJDK-apoptin-treated GBL-14 cells showed early apoptosis (6.8%) compared with PAMAMG3-HKRRR/pJDK-treated cells (1.5%). In contrast, apoptosis was not observed in HDFs after treatment with any complex used in the assay. These results suggest that surface modification of low-generation PAMAMG3 dendrimers in polymer-based gene delivery systems such as PAMAMG3-HKRRR generates an efficient carrier for therapeutic gene delivery to the target site of GBL-14 cells.
The PAMAMG4-KRRR dendrimer showed enhanced transfection efficiency over PAMAMG4 owing to surface modification with oligopeptides [20]. In this study, we developed PAMAMG3 derivatives (PAMAMG3-KRRR and PAMAMG3-HKRRR) conjugated with KRRR and HKRRR peptides on the surface of PAMAMG3 carrying with the apoptin gene as dendrimer-based gene delivery systems. Cationic polymers with primary amine groups showed cytotoxicity related to cell type, generation, surface charge density, and exposure time [17,33]. However, PAMAMG3 conjugated with the KRRR peptide
Supplementary data including one table can be found with this article online at https://doi.org/10.4196/kjpp.2021.25.5.467.
This research was supported by the Basic Research Lab Program and the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Korean government Ministry of Science and ICT (NRF2020R1A4A1018943, 2018R1A2A3074998 and 2019R1I1A1A01061429).
Y.B. and J.L. performed the cell-based assay experiments. C.K. and J.S.C. coordinated the study. Y.B. and J.H. prepared the manuscript. J.H. supervised the study.
The authors declare no conflicts of interest.
View Full Text | Article as PDF |
Abstract | Figure & Table |
Pubmed | PMC |
Print this Page | Export to Citation |
ⓒ 2019. The Korean Journal of Physiology & Pharmacology. Powered by INFOrang Co., Ltd