Indexed in SCIE, Scopus, PubMed & PMC
pISSN 1226-4512 eISSN 2093-3827

Article

home Article View

Original Article

Korean J Physiol Pharmacol 2021; 25(3): 251-258

Published online May 1, 2021 https://doi.org/10.4196/kjpp.2021.25.3.251

Copyright © Korean J Physiol Pharmacol.

Flos magnoliae constituent fargesin has an anti-allergic effect via ORAI1 channel inhibition

Phan Thi Lam Hong1,2,#, Hyun Jong Kim2,#, Woo Kyung Kim2,3,*, and Joo Hyun Nam1,2,*

1Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, 2Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, 3Department of Internal Medicine, Graduate School of Medicine, Dongguk University, Goyang 10326, Korea

Correspondence to:Joo Hyun Nam
E-mail: jhnam@dongguk.ac.kr
Woo Kyung Kim
E-mail: wk2kim@naver.com
#These authors contributed equally to this work.

Received: February 25, 2021; Revised: March 5, 2021; Accepted: March 9, 2021

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Flos magnoliae (FM), the dry flower buds of Magnolia officinalis or its related species, is a traditional herbal medicine commonly used in Asia for symptomatic relief of and treating allergic rhinitis, headache, and sinusitis. Although several studies have reported the effects of FM on store-operated calcium entry (SOCE) via the ORAI1 channel, which is essential during intracellular calcium signaling cascade generation for T cell activation and mast cell degranulation, the effects of its isolated constituents on SOCE remain unidentified. Therefore, we investigated which of the five major constituents of 30% ethanoic FM (vanillic acid, tiliroside, eudesmin, magnolin, and fargesin) inhibit SOCE and their physiological effects on immune cells. The conventional whole-cell patch clamp results showed that fargesin, magnolin, and eudesmin significantly inhibited SOCE and thus human primary CD4+ T lymphocyte proliferation, as well as allergen-induced histamine release in mast cells. Among them, fargesin demonstrated the most potent inhibitory effects not only on ORAI1 (IC50 = 12.46 ± 1.300 µM) but also on T-cell proliferation (by 87.74% ± 1.835%) and mast cell degranulation (by 20.11% ± 5.366%) at 100 µM. Our findings suggest that fargesin can be a promising candidate for the development of therapeutic drugs to treat allergic diseases.

Keywords: Eudesmin, Fargesin, Mast cell, ORAI, T Lymphocyte