Download original image
Fig. 4. Sitagliptin protected HUVECs through inhibiting over-activated autophagy. Cells were treated with normal glucose, high glucose, different concentrations of sitagliptin (0, 0.1, 1, 10, and 100 μM). The expression of LC3 was detected by Western blot (A, B). (C) Cell viability was detected after HG-induced HUVECs treated with rapamycin and sitagliptin. (D, E) Representative Western blot bands for the protein expression of LC3 and Beclin-1 in HG-induced HUVECs treated with rapamycin and sitagliptin. (F, G) Representative Western blot bands for the protein expression of LAMP1/2 in HG-induced HUVECs treated with rapamycin and sitagliptin. (H) The Cathepsin B/D activity results of in HG-induced HUVECs treated with rapamycin and sitagliptin were presented. (I) The productions of IL-1α, IL-6, IL-8, IL-18 in HG-induced HUVECs were determined by ELISA after treated with rapamycin and sitagliptin. HUVECs, Human umbilical vein endothelial cells; LC3, microtubule-associated protein 1 light chain 3; HG, high glucose; S, sitagliptin; RAPA, rapamycin; LAMP1/2, lysosomal-associated membrane protein 1/2; IL-1α, interleukin 1 alpha; IL-6, interleukin 6; IL-8, interleukin 8; IL-18, interleukin 18; ELISA, enzyme-linked immunosorbent assay. *p < 0.05 vs. control group, **p < 0.05 vs. HG + Sitagliptin group, ***p < 0.001 vs. control group or HG + Sitagliptin group, #p < 0.05 vs. HG group, ###p < 0.001 vs. HG group, ##p < 0.01 vs. HG group.
Korean J Physiol Pharmacol 2021;25:425-437 https://doi.org/10.4196/kjpp.2021.25.5.425
© Korean J Physiol Pharmacol