Abstract : The inflammasome is a cytosolic multiprotein platform that plays a key role in the inflammatory response, an essential innate immune response that protects the body from pathogens and cellular danger signals. Autophagy is a fundamental cellular mechanism that maintains homeostasis through the elimination and recycling of dysfunctional molecules and subcellular elements. Many previous studies have demonstrated a functional interplay between canonical inflammasomes that were earlier discovered and autophagy in inflammatory responses and diseases. Given the increasing evidence that non-canonical inflammasomes are unique and key factors in inflammatory responses, the functional interplay between non-canonical inflammasomes and autophagy is noteworthy. Recent studies have demonstrated that non-canonical inflammasomes and autophagy are functionally correlated with inflammatory responses and diseases. This review comprehensively discusses recent studies that have investigated the functional interplay of non-canonical inflammasomes, such as mouse caspase-11 and human caspase-4, with autophagy and autophagy-related proteins in inflammatory responses and diseases and provides insight into the development of novel anti-inflammatory therapeutics by modulating the functional interplay between non-canonical inflammasomes and autophagy.
Abstract : Platelet-derived growth factors (PDGFs) ligands and their corresponding receptors, PDGF receptor (PDGFR)α and PDGFRβ, play a crucial role in controlling diverse biological functions, including cell growth, viability and migration. These growth factors bind to PDGFRs, which are receptor tyrosine kinases present on the surface of target cells. The interaction between PDGFs and PDGFRs induces receptor dimerization and subsequent activation through auto-phosphorylation, which in turn triggers a cascade of intracellular signaling pathways. PDGF/PDGFR signaling is essential for maintaining normal physiological functions, including tissue regeneration and growth. However, dysregulation of this signaling pathway leads to pathological conditions, including fibrosis, atherosclerosis, and cancer development in various organs. The pathological impact of PDGF/PDGFR signaling primarily stems from its capacity to promote excessive cell proliferation, enhanced migration, and increased extracellular matrix deposition, resulting in tissue overgrowth, scarring, and abnormal vessel formation. These processes are integral to the pathogenesis of fibrotic, neoplastic, and vascular disorders. Therefore, understanding these pathways is crucial for developing targeted treatments designed to inhibit PDGF/PDGFR signaling in these diseases. This review delves into the dual role of PDGF/PDGFR signaling in both physiological and pathophysiological contexts across different organs and provides insights into current pharmacological therapies designed to target the PDGF signaling pathway.
Abstract : Neurosteroids play an important role as endogenous neuromodulators that are locally produced in the central nervous system and rapidly change the excitability of neurons and the activation of microglial cells and astrocytes. Here we review the mechanisms of synthesis, metabolism, and actions of neurosteroids in the central nervous system. Neurosteroids are able to play a variety of roles in the central nervous system under physiological conditions by binding to membrane ion channels and receptors such as gamma-aminobutyric acid type A receptors, Nmethyl- D-aspartate receptors, L- and T-type calcium channels, and sigma-1 receptors. In addition, numerous neurological disorders, including persistent neuropathic pain, multiple sclerosis, and seizures, have altered the levels of neurosteroids in the central nervous system. Thus, we review how local synthesis and metabolism of neurosteroids are modulated in the central nervous system and describe the role of neurosteroids under pathological conditions. Furthermore, we discuss whether neurosteroids may play a role as a new therapeutic for the treatment of neurological disorders.
Abstract : Sepsis is a potentially fatal infectious disease that easily causes shock and numerous organ failures. The kidney is one of the most susceptible to injury. Early intervention and renal protection significantly minimize patient mortality. Oligomeric proanthocyanidin (OPC), a naturally occurring plant compound, has a high potential for renal protection. This study was aimed at exploring the potential renoprotective role of OPC in sepsis-related renal tubular injury. C57/B6 mice were intraperitoneally injected with lipopolysaccharide (LPS) to simulate sepsis-related acute kidney injury in vivo. Renal function and pathology were assessed. RNA sequencing examined OPC mechanisms against LPS-induced renal injury. Oxidative stress indicators and inflammatory cytokines in blood serum and renal tissues were evaluated. In vitro, MTT assays assess cell viability. Apoptosis cells were detected using Hoechst 33342 and propidium iodide staining. Western blot assessed PI3K/AKT and NFκB signaling pathway proteins. OPC reduced LPS-induced renal tubular injury, improved renal functions and pathological changes, restored glutathione content, superoxide dismutase activity, and catalase activity, inhibited malondialdehyde overproduction, and suppressed LPS-induced overproduction of pro-inflammatory cytokines and the decline of anti-inflammatory cytokines. OPC attenuated LPS-induced cell morphological injury, reduced cell viability loss, and recovered the changes in proteins involved in PI3K/AKT and NFκB signaling pathways in MTEC cells. OPC protects against LPSinduced renal tubular injury by counteracting oxidative stress, inhibiting inflammatory responses, activating the PI3K/AKT signaling pathway, and inhibiting the NFκB signaling pathway. It may provide a viable solution to lessen renal injury in patients with sepsis.
Abstract : Atherosclerosis is a major contributor to cardiovascular disease, characterized by inflammation and lipid accumulation in arterial walls, leading to plaque formation. Elevated low-density lipoprotein cholesterol is a primary risk factor for atherosclerosis. All-trans retinoic acid (ATRA), a metabolite of vitamin A, has demonstrated anti-inflammatory effects and potential in regulating vascular injury. 9-cisretinoic acid (9cRA) is an active metabolite of vitamin A and activates the retinoid X receptor. This study investigates whether potassium retinoate (PA9RA), a synthetic combination of ATRA and 9cRA, offers superior efficacy in treating atherosclerosis compared to established treatments such as clopidogrel and atorvastatin. Male ApoE–/– mice were fed a Western-type diet and treated with PA9RA, clopidogrel, or atorvastatin for 10 weeks. The body weight, organ weight, serum biochemistry, and histopathology, including atherosclerotic lesion area and liver steatosis were assessed. PA9RA treatment led to a significant reduction in body weight and inguinal fat, with the 45 mg/kg/day dose showing marked efficacy in decreasing atherosclerotic lesion size and ameliorating liver steatosis. Histopathological evaluation revealed decreased foam cell formation and improved liver histology in PA9RA-treated groups compared to controls. Notable side effects included epidermal hyperplasia and gastric hyperplasia at high doses of PA9RA. PA9RA exhibits superior efficacy over clopidogrel and atorvastatin in ameliorating atherosclerosis and fatty liver in ApoE–/– mice. This study highlights PA9RA's potential as a promising therapeutic agent for atherosclerosis. Further research is needed to elucidate its mechanisms of action and assess long-term safety and efficacy.
Abstract : To investigate whether Tasquinimod can influence cisplatin resistance in drug-resistant ovarian cancer (OC) cell lines by regulating histone deacetylase 4 (HDAC4) or p21, we explored its effects on the cell cycle, and associated mechanisms. RT-PCR and Western blot analyses, flow cytometry, CCK8 assay, and immunofluorescence were utilized to investigate the effects of Tasquinimod on gene expression, cell cycle, apoptosis, viability, and protein levels in OC cells. The results showed that Tasquinimod inhibited cell viability and promoted apoptosis in SKOV3/DDP (cisplatin) and A2780/DDP cells more effectively than DDP alone. In combination with cisplatin, Tasquinimod further enhanced cell apoptosis and reduced cell viability in these cell lines, an effect that could be reversed following HDAC4 overexpression. Tasquinimod treatment down-regulated HDAC4, Bcl-2, and cyclin D1, and CDK4 expression and up-regulated the cleaved-Caspase-3, and p21 expression in SKOV3/DDP and A2780/ DDP cells. Additionally, Tasquinimod inhibited DDP resistance in OC/DDP cells. These effects were similarly observed in OC mouse models treated with Tasquinimod. In conclusion, Tasquinimod can improve OC cells' sensitivity to DDP by down-regulating the HDAC4/p21 axis, offering insights into potential strategies for overcoming cisplatin resistance in OC.
Abstract : Dry eye disease (DED) is a complicated disorder that impacts ocular surface and tear-film stability. Inflammation has recently been reported as the core mechanism and main therapeutic target of DED. Although anti-inflammatory drugs have been developed, they still have limited efficacy and various side effects. Recent reports have suggested that kinase inhibitors are beneficial for relieving inflammation. Therefore, this study aimed to investigate the anti-inflammatory effects of LCB 03-0110, a multi-tyrosine kinase inhibitor, on representative cell-based models (HCE- 2 and Th17 cells) of DED. While tacrolimus and tofacitinib, two different anti-inflammatory drugs that have entered clinical trials for DED treatment, did not induce any anti-inflammatory responses in HCE-2 cells, LCB 03-0110 significantly suppressed the phosphorylation of P38 and ERK and reduced the expression levels of IL-6 and IL-8 in HCE-2 cells treated with either LPS or poly(I:C). Moreover, LCB 03-0110 notably decreased the expression level of IL-17A in Th17 cells in a dose-dependent manner, whereas tofacitinib promoted IL-17A production at low concentrations but inhibited its expression at concentrations greater than 1 μM. In addition, LCB 03-0110 was found to be non-toxic to both HCE-2 and Th17 cells. In conclusion, these results suggest that LCB 03-0110 would be a promising drug candidate for the treatment of DED because of its advantages over tacrolimus and tofacitinib.
Abstract : Microglial activation during aging is associated with neuroinflammation and cognitive impairment. Galectin-3 plays a crucial role in microglial activation and phagocytosis. However, the role of galectin-3 in the aged brain is not completely understood. In the present study, we investigated aging-related mechanisms and microglial galectin-3 expression in the mouse hippocampus using female 6-, 12-, and 24-month-old C57BL/6 mice. Western blot analysis revealed neurodegeneration, blood-brain barrier leakage, and increased levels of neuroinflammation-related proteins in 24-month-old mice compared to 6- and 12-month-old mice. Immunohistochemistry revealed an increase in activated microglia in the hippocampus of 24-month-old mice compared to 6- and 12-month-old mice. Furthermore, we found more galectin-3 and triggering receptor expressed on myeloid cells-2-positive microglia in 24-month-old mice compared to 6- and 12-month-old mice. Using primary mouse microglial cells, galectin -3 was also increased by lipopolysaccharide treatment. These findings suggest that galectin-3 may play an important role in microglial activation and neuroinflammation during brain aging.
Abstract : Donepezil, an acetylcholinesterase inhibitor, is widely used for managing the symptoms of Alzheimer’s disease (AD), yet its clinical response varies widely among individuals. This study aims to investigate the influence of CYP2D6 genetic variants on donepezil concentration, treatment response, and adverse effects in Korean patients with AD dementia. We conducted a longitudinal study involving 76 patients receiving either 5 mg or 10 mg of donepezil. Genetic testing identified 9 CYP2D6 alleles, categorizing patients by metabolizing abilities. Blood sampling for plasma concentrations of donepezil were performed at steady-state. Mini-Mental State Examination (MMSE) were conducted at 12, 24 and 36 months after the initiation of treatment. Adverse events were collected throughout the study period. Donepezil plasma concentrations differed significantly among metabolizer statuses (mean 56.8 ± 27.1 ng/ml in normal metabolizers vs. 69.6 ± 30.1 ng/ml in intermediate metabolizers, p = 0.042), but these differences did not affect cognitive function over three years as assessed by MMSE. Additionally, there was no significant correlation between donepezil plasma concentration and adverse events. Our study is the first to elucidate the associations between CYP2D6 genotype and the concentration, clinical response or adverse events of donepezil in Korean patients with AD dementia. Larger studies are necessary to fully understand the impact of CYP2D6 genetic variants on therapeutic outcomes with donepezil.
Abstract : Heart diseases are a significant contributor to global morbidity and mortality, and despite their diverse and complex mechanisms, treatment options remain limited. Maltol, a natural compound with antioxidant and anti-inflammatory activities, exhibits potential for addressing this need. This study evaluates the cardioprotective effects of maltol in isoproterenol (ISO)-induced cardiac stress models and Duchenne muscular dystrophy (DMD). Maltol’s cardiac cytotoxicity was assessed in rodent (H9c2) and human (AC16) cells and compared with that of dapagliflozin to illustrate its cardiac safety. In ISO-induced stress models, maltol significantly reduced hypertrophic markers and inflammation while enhancing autophagy and antioxidant pathways. In the mdx mice, a DMD model, maltol treatment improved cardiac contractility and reduced pathogenic remodeling. Enhanced phosphorylation of phospholamban and trends toward higher SERCA2a expression indicated enhanced Ca2+ handling, which is crucial in DMD cardiomyopathy. This study demonstrated that maltol has the potential to provide therapeutic benefits for DMD and other cardiac conditions characterized by hypertrophy and inflammation, as evidenced by its well-known antioxidant properties, low cytotoxicity, and capacity to enhance cardiac function and Ca2+ handling.
Abstract : Monotropein is a compound classified into iridoid which is found in herbaceous plants Morindae officinalis. It possesses anti-inflammatory, antioxidant, and anti-osteoarthritic activities. Previous study indicates that monotropein may have the potential to combat cardiovascular disease, although the related mechanism remains unclear. In this study, we constructed the model of atherosclerosis by oxidized low density lipoprotein-induced vascular smooth muscle cells and LDLR–/– mice given high-fat diet to investigate the effects of monotropein on atherosclerosis. Our results showed that monotropein treatment significantly reduced the area of atherosclerotic plaques and necrotic cores in mice, inhibited the proliferation and migration of vascular smooth muscle cells, and reduced inflammatory responses and oxidative stress, which in turn alleviated atherosclerosis. In addition, we found that monotropein reduced the expression levels of P-NF-κB and P-AP-1. In conclusion, our data suggest that monotropein inhibited the proliferation and migration of vascular smooth muscle cells by mediating the activity of NF-κB, AP-1, reducing the level of inflammation and oxidative stress, and thus resisting the development of atherosclerosis. These findings demonstrate the efficacious therapeutic impact of monotropein on atherosclerosis and elucidate its specific target.
Abstract : Reliable preclinical models for assessing drug-induced cardiotoxicity are essential to reduce the high rate of drug withdrawals during development. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have emerged as a promising platform for such assessments due to their expression of cardiacspecific ion channels and electrophysiological properties. In this study, we investigated the effects of eight arrhythmogenic drugs—E4031, nifedipine, mexiletine, JNJ303, flecainide, moxifloxacin, quinidine, and ranolazine—on hiPSC-CMs derived from both healthy individuals and a long QT syndrome (LQTS) patient using multielectrode array systems. The results demonstrated dose-dependent changes in field potential duration and arrhythmogenic risk, with LQTS-derived hiPSC-CMs showing increased sensitivity to hERG channel blockers such as E4031. Furthermore, the study highlights the potential of hiPSC-CMs to model disease-specific cardiac responses, providing insights into genetic predispositions and personalized drug responses. Despite challenges related to the immaturity of hiPSC-CMs, their ability to recapitulate human cardiac electrophysiology makes them a valuable tool for preclinical cardiotoxicity assessments. This study underscores the utility of integrating patientderived hiPSC-CMs with advanced analytical platforms, such as multi-electrode array systems, to evaluate drug-induced electrophysiological changes. These findings reinforce the role of hiPSC-CMs in drug development, facilitating safer and more efficient screening methods while supporting precision medicine applications.
Jinxiu Hou1, Bo Wang1, Jing Li2, and Wenbo Liu3,*
2024; 28(3): 183-196
https://doi.org/10.4196/kjpp.2024.28.3.183
Canmin Zhu1, Dili Wang1, Chang Chang1, Aofei Liu2,3, Ji Zhou2,3, Ting Yang1, Yuanfeng Jiang2,3, Xia Li2,3, and Weijian Jiang2,*
2024; 28(3): 239-252
https://doi.org/10.4196/kjpp.2024.28.3.239
Yoo Rim Kim1,3 and Sang Jeong Kim1,2,3,*
2022; 26(2): 69-75
https://doi.org/10.4196/kjpp.2022.26.2.69
Deokbae Park1,#, Jung-Hee Lee2,#, and Sang-Pil Yoon3,*
2022; 26(5): 377-387
https://doi.org/10.4196/kjpp.2022.26.5.377
Juyeon Ko#, Jinhyeong Kim#, Jongyun Myeong, Misun Kwak, and Insuk So*
2023; 27(2): 187-196
https://doi.org/10.4196/kjpp.2023.27.2.187
Ji-Hye Choi, Sangmin Lee, Hye-Ju Han, and Jungkee Kwon*
2023; 27(1): 105-112
https://doi.org/10.4196/kjpp.2023.27.1.105
ⓒ 2019. The Korean Journal of Physiology & Pharmacology. Powered by INFOrang Co., Ltd