Abstract : Compelling evidence has demonstrated the critical role of circular RNAs (circRNAs) during lung adenocarcinoma (LUAD) progression. Herein, we explored a novel circRNA, circ_0129047, and detailed its mechanism of action. The expression of circ 0129047, microRNA-665 (miR-665), and protein tyrosine phosphatase receptor type B (PTPRB) in LUAD tissues and cells was determined using reverse transcription quantitative polymerase chain reaction and Western blotting. Cell Counting Kit-8 and colony formation assays were conducted to detect LUAD cell proliferation, and western blotting was performed to quantify apoptosis-related proteins (Bcl-2 and Bax). Luciferase reporter and RNA immunoprecipitation assays were used to validate the predicted interaction between miR-665 and circ_0129047 or PTPRB. A xenograft assay was used for the in vivo experiments. Circ_0129047 and PTPRB were downregulated in LUAD tissues and cells, whereas miR-665 expression was upregulated. Overexpression of circ_0129047 suppresses LUAD growth in vivo and in vitro. Circ_0129047 is the target of miR-665, and the miR-665 mimic ablated the antiproliferative and pro-apoptotic phenotypes of LUAD cells by circ_0129047 augmentation. MiR-665 targets the 3ʹUTR of PTPRB and downregulates PTPRB expression. PTPRB overexpression offsets the pro-proliferative potential of miR-665 in LUAD cells. Circ_0129047 sequestered miR-665 and upregulated PTPRB expression, thereby reducing LUAD progression, suggesting a promising approach for preventing LUAD.
Abstract : Percutaneous coronary intervention and acute coronary syndrome are both closely tied to the frequently occurring complication of coronary microembolization (CME). Resveratrol (RES) has been shown to have a substantial cardioprotective influence in a variety of cardiac diseases, though its function and potential mechanistic involvement in CME are still unclear. The forty Sprague–Dawley rats were divided into four groups randomly: CME, CME + RES (25 mg/kg), CME + RES (50 mg/kg), and sham (10 rats per group). The CME model was developed. Echocardiography, levels of myocardial injury markers in the serum, and histopathology of the myocardium were used to assess the function of the cardiac muscle. For the detection of the signaling of TLR4/MyD88/NF-κB along with the expression of pyroptosis-related molecules, ELISA, qRT-PCR, immunofluorescence, and Western blotting were used, among other techniques. The findings revealed that myocardial injury and pyroptosis occurred in the myocardium following CME, with a decreased function of cardiac, increased levels of serum myocardial injury markers, increased area of microinfarct, as well as a rise in the expression levels of pyroptosis-related molecules. In addition to this, pretreatment with resveratrol reduced the severity of myocardial injury after CME by improving cardiac dysfunction, decreasing serum myocardial injury markers, decreasing microinfarct area, and decreasing cardiomyocyte pyroptosis, primarily by blocking the signaling of TLR4/MyD88/NF-κB and also reducing the NLRP3 inflammasome activation. Resveratrol may be able to alleviate CME-induced myocardial pyroptosis and cardiac dysfunction by impeding the activation of NLRP3 inflammasome and the signaling pathway of TLR4/MyD88/NF-κB.
Abstract : Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer and current therapeutic strategies are limited in their effectiveness. The expressions of Rab5 and the M2 tumor-associated macrophage marker CD163 in tissues were detected by Western blot. The migration and invasion of cells were determined using a Transwell assay. The expressions of the exosome markers were evaluated by Western blot. The polarization of human macrophages (THP-1) was determined by incubation of THP-1 cells with conditioned medium or exosomes collected from MDA-MB-231 cells with indicated transfections or by a coculture system of THP-1 and MDA-MB-231 cells. The M1 and M2 macrophage markers were evaluated by qRT-PCR. The expression of Rab5 in TNBC was significantly higher than that in normal breast tissue. Rab5 expressions in triple-negative and luminal A breast cancer were higher than those in other molecular subtypes. Higher CD163 expression was observed in triple-negative breast cancer and in triple-negative and luminal B subtypes. Rab5 knockdown suppressed but Rab5 overexpression promoted the migration and invasion capacity of MDA-MB-231 cells. The levels of CD63 and CD9 in the medium of Rab5 knockdown cells were lower than those in control cells, whereas higher levels of CD63 and CD9 were observed in Rab5 overexpression cells. Rab5 knockdown decreased the excretion but did not alter the diameter of the exosomes. Knockdown of Rab5 facilitated the anti-tumor polarization of macrophages, which was partially reversed by Rab5 overexpression. Therefore, Rab5 is expected to be a potential therapeutic target for triple-negative breast cancer.
Abstract : This study aims to explore the impact of Rehmannioside D (RD) on ovarian functions of rats with diminished ovarian reserve (DOR) and its underlying mechanisms of action. A single injection of cyclophosphamide was performed to establish a DOR rat model, and fourteen days after the injection, the rats were intragastrically administrated with RD for two weeks. Rat estrus cycles were tested using vaginal smears. Ovarian tissues were histologically evaluated, the number of primordial, mature, and atretic follicles was calculated, and the apoptotic rate of granulosa cells. Follicle-stimulating hormone (FSH), luteinizing hormone (LH), and estradiol (E2) levels were determined by ELISA assays. Protein levels of Forkhead Box O1 (FOXO1), KLOTHO, Bcl-2, and Bax were investigated in ovarian tissues of DOR rats. The binding between FOXO1 and KLOTHO was verified by ChIP assay. High-dose administration of RD into DOR rats improved their estrus cycles, increased ovarian index, enhanced the number of primordial and mature follicles, reduced the number of atretic follicle number, and ovarian granulosa cell apoptosis in addition to inhibiting FSH and LH levels and upregulating E2 expression. FOXO1 and KLOTHO were significantly suppressed in DOR rats. FOXO1 knockdown partially suppressed the protective effects of RD on DOR rats, and KLOTHO overexpression could restore RD-induced blockade of DOR development despite knocking down FOXO1. FOXO1 antibody enriched KLOTHO promoter, and the binding between them was reduced in DOR group compared to that in sham group. RD improved ovarian functions in DOR rats and diminished granulosa cell apoptosis via the FOXO1/KLOTHO axis.
Abstract : The excessive inflammatory response induced by myocardial infarction exacerbates heart injury and leads to the development of heart failure. Recent studies have confirmed the involvement of multiple transcription factors in the modulation of cardiovascular disease processes. However, the role of KLF9 in the inflammatory response induced by cardiovascular diseases including myocardial infarction remains unclear. Here, we found that the expression of KLF9 significantly increased during myocardial infarction. Besides, we also detected high expression of KLF9 in infiltrated macrophages after myocardial infarction. Our functional studies revealed that KLF9 deficiency prevented cardiac function and adverse cardiac remodeling. Furthermore, the downregulation of KLF9 inhibited the activation of NF-κB and MAPK signaling, leading to the suppression of inflammatory responses of macrophages triggered by myocardial infarction. Mechanistically, KLF9 was directly bound to the TLR2 promoter to enhance its expression, subsequently promoting the activation of inflammation-related signaling pathways. Our results suggested that KLF9 is a pro-inflammatory transcription factor in macrophages and targeting KLF9 may be a novel therapeutic strategy for ischemic heart disease.
Abstract : Transient receptor potential canonical (TRPC) channels are non-selective calcium-permeable cation channels. It is suggested that TRPC4β is regulated by phospholipase C (PLC) signaling and is especially maintained by phosphatidylinositol 4,5-bisphosphate (PIP2). In this study, we present the regulation mechanism of the TRPC4 channel with PIP2 hydrolysis which is mediated by a channel-bound PLCδ1 but not by the GqPCR signaling pathway. Our electrophysiological recordings demonstrate that the Ca2+ via an open TRPC4 channel activates PLCδ1 in the physiological range, and it causes the decrease of current amplitude. The existence of PLCδ1 accelerated PIP2 depletion when the channel was activated by an agonist. Interestingly, PLCδ1 mutants which have lost the ability to regulate PIP2 level failed to reduce the TRPC4 current amplitude. Our results demonstrate that TRPC4 self-regulates its activity by allowing Ca2+ ions into the cell and promoting the PIP2 hydrolyzing activity of PLCδ1.
Suhan Cho1,#, Hojun Lee2,#, Ho-Young Lee3, Sung Joon Kim1,4,*, and Wook Song5,6,7,*
2022; 26(3): 207-218
https://doi.org/10.4196/kjpp.2022.26.3.207
Jingying Gao1,2,*, Lixia Xia1, and Yuanyuan Wei1,2
2022; 26(3): 165-174
https://doi.org/10.4196/kjpp.2022.26.3.165
Ri Zhe Zhu#, Bing Si Li#, Shang Shang Gao, Jae Ho Seo*, and Byung-Min Choi*
2021; 25(4): 297-305
https://doi.org/10.4196/kjpp.2021.25.4.297
Zhi-Qing Chen1, You Zhou1, Jun-Wen Huang1, Feng Chen2, Jing Zheng1, Hao-Liang Li1, Tao Li1, and Lang Li1,*
2021; 25(2): 147-157
https://doi.org/10.4196/kjpp.2021.25.2.147
Hualei Bai1, Shize Chen1, Tiezheng Yuan1, Dongyuan Xu1, Songbiao Cui2,*, and Xiangdan Li1,*
2021; 25(3): 217-225
https://doi.org/10.4196/kjpp.2021.25.3.217
Phan Thi Lam Hong1,2,#, Hyun Jong Kim2,#, Woo Kyung Kim2,3,*, and Joo Hyun Nam1,2,*
2021; 25(3): 251-258
https://doi.org/10.4196/kjpp.2021.25.3.251
Haixia Wang1,2, Xin Shi2, Longlong Cheng3, Jie Han2, and Jianjun Mu1,*
2021; 25(3): 239-249
https://doi.org/10.4196/kjpp.2021.25.3.239
Myeongjoo Son1,2,#, Seyeon Oh2,#, Hye Sun Lee2, Junwon Choi1,2, Bae-Jin Lee3, Joung-Hyun Park3, Chul Hyun Park4, Kuk Hui Son4,*, and Kyunghee Byun1,2,*
2021; 25(1): 27-38
https://doi.org/10.4196/kjpp.2021.25.1.27
Yoonhee Bae1,2, Jell Lee3, Changwon Kho2, Joon Sig Choi3, and Jin Han1,*
2021; 25(5): 467-478
https://doi.org/10.4196/kjpp.2021.25.5.467
Promise M. Emeka1,*, Sahibzada T. Rasool2, Mohamed A. Morsy1,3, Mohamed I. Hairul Islam4, and Muhammad S. Chohan2
2021; 25(4): 321-331
https://doi.org/10.4196/kjpp.2021.25.4.321
Hyemi Bae1, Taeho Kim2, and Inja Lim1,*
2021; 25(3): 227-237
https://doi.org/10.4196/kjpp.2021.25.3.227
Jing Cheng1, Chaoyang Ren2, Renli Cheng3, Yunning Li4, Ping Liu1, Wei Wang1,*, and Li Liu1,*
2021; 25(2): 131-137
https://doi.org/10.4196/kjpp.2021.25.2.131
ⓒ 2019. The Korean Journal of Physiology & Pharmacology. Powered by INFOrang Co., Ltd