Korean J Physiol Pharmacol 2013 Feb; 17(1): 89-97
Keun-Sung Lee, Jin-Koo Lee, Hyung-Gun Kim, and Hak Rim Kim
Differential Effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine on Motor Behavior and Dopamine Levels at Brain Regions in Three Different Mouse Strains
Department of Pharmacology, College of Medicine, Dankook University, Cheonan 330-714, Korea
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Developing an animal model for a specific disease is very important in the understanding of the underlying mechanism of the disease and allows testing of newly developed new drugs before human application. However, which of the plethora of experimental animal species to use in model development can be perplexing. Administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a very well known method to induce the symptoms of Parkinson's disease in mice. But, there is very limited information about the different sensitivities to MPTP among mouse strains. Here, we tested three different mouse strains (C57BL/6, Balb-C, and ICR) as a Parkinsonian model by repeated MPTP injections. In addition to behavioral analysis, endogenous levels of dopamine and tetrahydrobiopterin in mice brain regions, such as striatum, substantia nigra, and hippocampus were directly quantified by liquid chromatography-tandem mass spectrometry. Repeated administrations of MPTP significantly affected the moving distances and rearing frequencies in all three mouse strains. The endogenous dopamine concentrations and expression levels of tyrosine hydroxylase were significantly decreased after the repeated injections, but tetrahydrobiopterin did not change in analyzed brain regions. However, susceptibilities of the mice to MPTP were differed based on the degree of behavioral change, dopamine concentration in brain regions, and expression levels of tyrosine hydroxylase, with C57BL/6 and Balb-C mice being more sensitive to the dopaminergic neuronal toxicity of MPTP than ICR mice.
Keyword : Dopamine, Mass spectrometry, Mouse strains, MPTP, Parkinson's disease

2010 뱬 Copyright The Korean Journal of Physiology & Pharmacology. All Rights Reserved.
8-17, World Cup buk-ro 5ga-gil, Seogyo-dong, Mapo-gu, Seoul 121-841, Korea
Physiology      Tel: +82-2-568-8026    Fax: +82-2-568-8051    E-mail: kps1710@naver.com
Pharmacology    Tel: +82-2-326-0370    Fax: +82-2-326-0371    E-mail: head@kosphar.org
Powered by INFOrang.co., Ltd